The presence of ≥ 15% bone marrow (BM) ring sideroblasts (RS) and < 5% blasts is required for a diagnosis of refractory anemia with ring sideroblasts. We examined the phenotypic and prognostic relevance of this “15%” RS threshold in 200 patients with myelodysplastic syndromes (MDS) without excess blasts and with ≥ 1% RS. The impact of RS% was assessed both as a continuous and categorical variable: < 5% (n = 56), 5%-14% (n = 32), 15%-50% (n = 79), and > 50% (n = 33). RS% correlated (P < .05) directly with age, platelet count, transfusion dependency, BM cellularity, and mutant SF3B1 and inversely with hemoglobin level, multilineage dysplasia, and high-risk karyotype; but did not correlate with IDH mutations. At a median follow-up of 33 months, 156 (73%) deaths and 24 (12%) leukemic transformations were documented. Neither univariate nor multivariable analysis showed significant effect for RS% on overall or leukemia-free survival, suggesting the limited prognostic value of quantifying BM RS in MDS.

Ring sideroblasts (RS) are erythroid precursors with iron laden mitochondria forming a perinuclear ring, and are commonly seen in patients with myelodysplastic syndromes (MDS).1,2  The presence of ≥ 15% RS constitutes the operational diagnosis of MDS-RS.1  Refractory anemia with ring sideroblasts (RARS) forms the prototypical MDS subcategory with RS but the latter can also be seen in other MDS subcategories including refractory cytopenias with multilineage dysplasia (RCMD), MDS-unclassifiable (MDS-U), and refractory anemia with excess blasts (RAEB-1/2). Outside the context of MDS, RS are seen in other myeloid malignancies (eg, myeloproliferative neoplasms)3,4  and nonclonal conditions such as excess alcohol use, lead toxicity, copper or pyridoxine deficiency, isoniazid therapy, and hereditary sideroblastic anemias associated with severalgerm line mutations involving δ-aminolevulinate synthase 2 (ALAS2),5  solute carrier family 25 member 38 (SLC25A38),6  glutaredoxin-5 (GLRX5),7  and the ATP-binding cassette sub-family B member 7 (ABCB7).8  Most recently, spliceosome mutations were shown to be prevalent in MDS with a relatively specific association between MDS-RS and mutations involving splicing factor 3B subunit 1 (SF3B1).9-12  The pathogenetic contribution of SF3B1 mutations in MDS-RS is not clear although up-regulation of ALAS2 and down-regulation of ABCB7 have been reported in RARS.13,14 

Among the different categories of MDS-RS without excess blasts (< 5%), RARS is generally believed to have the best survival rate with the lowest risk of leukemic transformation.1  The rationale behind assigning the 15% threshold in defining RARS is not clear and the overall clinical relevance of quantifying bone marrow (BM) RS%, especially if one was to account for the presence or absence of multilineage dysplasia has not been systematically studied. In the current study, we examined the phenotypic and prognostic relevance of RS%, in general, and the “15%” RS% threshold, in particular, in the context of MDS without excess blasts by identifying cases defined by the presence of ≥ 1% RS and < 5% blasts in their BM.

After approval by the Mayo Clinic institutional review board, Mayo Clinic databases and cell banks were queried to identify patients with MDS without excess blasts (< 5%) and ≥ 1% RS. All study patients were required to have undergone BM examination and cytogenetic evaluation at diagnosis. Pathology slides, including iron stains, were centrally re-reviewed (by C.A.H. and J.M.H.) to accurately quantify BM RS percentage and confirm World Health Organization morphologic diagnosis.1  To assess the phenotypic and prognostic impact of RS%, the specific variable was evaluated both as a continuous and categorical parameter; the latter was accomplished by stratifying patients into 4 categories based on the percentage of RS (< 5%, 5%-14%, 15%-50%, and > 50%).

Detailed analysis of clinical parameters and cytogenetic findings was performed to risk stratify patients according to the International Prognostic Scoring System (IPSS) and the revised IPSS (IPSS-R).15  Patients were also screened for JAK2, MPL, IDH, and SF3B1 mutations, using previously described methods.10,16-18  All analyses included parameters obtained at the time of initial diagnosis. Standard statistical methods were used for parameter comparison and survival curves were prepared by the Kaplan-Meier method and compared by the log-rank test. Cox proportional hazard regression model was used for multivariable analysis. P values less than .05 were considered significant. The Stat View (SAS Institute) statistical package was used for all computations.

The current study included 200 Mayo Clinic patients (median age 71 years; 70% males) with MDS without excess blasts and ≥ 1% RS. Among them, 56 (28%) displayed < 5% RS, 32 (16%) displayed 5%-14% RS, 79 (40%) displayed 15%-50% RS, and 33 (17%) displayed > 50% RS. Table 1 outlines the presenting clinical and laboratory features and subsequent events in all 200 study patients stratified by RS percentage. IPSS-R risk distributions were: 20% very good, 57% good, 11% intermediate, 5% poor, and 9% very poor. Thirty-four (17%) patients were red blood cell transfusion–dependent at presentation. Fifty-six patients (28%) met the World Health Organization (WHO) criteria for RARS whereas the remaining 144 patients were classified as RCMD (n = 130) or MDS-U (n = 14). The median (range) RS% in these 3 morphologic groups were 36% (18%-70%), 8% (1%-78%), and 5% (1%-75%), respectively. Abnormal karyotype was detected in 91 (45%) patients, including 41 (21%) with high-risk abnormalities. Mutational frequencies were 58% for SF3B1, 9% for IDH2, 3% for JAK2V617F, 2% for IDH1, and 1% for MPL (Table 1).

Table 1

Clinical and laboratory features and subsequent events in 200 patients with myelodysplastic syndromes and ≥ 1% ringed sideroblasts without excess blasts, stratified by the ring sideroblast percentage

VariableMyelodysplastic syndromes without excess blasts
P
RS > 1% (n = 200)RS < 5% (n = 56)RS 5%-14% (n = 32)RS 15%-50% (n = 79)RS > 50% (n = 33)RS%, categories comparedRS%, continuous variable
Median age, y (range) 71 (17-90) 70 (17-87) 66 (25-88) 71 (44-90) 74 (49-89) .05 .02 
Males, n (%) 140 (70) 41 (73) 23 (72) 51 (65) 25 (76) .58 .76 
Median hemoglobin, g/dL (range) 10 (6-16) 10 (7-14) 10.5 (7-15) 10 (6-16) 9 (7-12) .02 .006 
Median MCV, femtoliter (range) 97 (72-120) 95 (72-116) 96 (82-118) 98 (77-120) 98 (78-118) .7 .07 
Median WBC, × 109 cells/L (range) 4 (1-37) 4 (1-37) 4 (1-12) 4 (1-13) 6 (1-18) .20 .43 
Median ANC, × 109 cells/L (range) 2.1 (.2-33) 3 (1-33) 2.8 (0.2-8) 2.8 (1-9) 3.4 (2.2-13) .76 .45 
Median platelets, × 109 cells/L (range) 133 (6-819) 86 (18-505) 84 (15-416) 183 (6-607) 237 (7-819) < .0001 < .0001 
Median BM cellularity, % (range) 70 (10-100) 60 (15-95) 62 (30-100) 70 (10-100) 80 (40-100) .0006 .0025 
Median BM ring sideroblast, % (range) 19 (1-78) 1 (1-4) 8 (5-14) 30 (15-50) 60 (52-78) < .0001 NA 
WHO histologic category, n (%)        
    RARS 56 (20) 43 (54) 13 (39) < .0001 < .0001 
    RCMD 130 (47) 50 (89) 29 (91) 34 (43) 17 (51)   
    MDS-U 14 (7) 6 (11) 3 (9) 2 (3) 3 (9)   
Cytogenetics        
    Normal/Diploid (%) 109 (55) 22 (39) 15 (47) 51 (65) 21 (64) .09 .12 
    Abnormal (%) 91 (45) 34 (61) 17 (53) 28 (35) 12 (36)   
Cytogenetic risk category per IPSS-R, n (%)        
    Very good 11 (6) 5 (10) 3 (9) 0 (0) 3 (9) .01 .008 
    Good 128 (64) 26 (46) 17 (53) 62 (79) 23 (70)   
    Intermediate 20 (10) 7 (13) 5 (16) 7 (9) 1 (3)   
    Poor 20 (10) 10 (18) 4 (13) 5 (6) 1 (3)   
    Very poor 21 (11) 8 (14) 3 (9) 5 (6) 5 (15)   
Molecular profile, n (%)        
    IDH1 3 (2) 0 (0) 2 (6) 1 (1) 0 (0) .84 .9 
    IDH2 17 (9) 6 (11) 3 (9) 7 (9) 1 (3) .69 .25 
    JAK2 5 (3) 0 (0) 2 (6) 1 (1) 2 (6)   
    MPL 1 (1) 1 (2) 0 (0) 0 (0) 0 (0)   
    SF3B1/n* 64/110 (58) 0/10 (0) 5/17 (29) 33/50 (66) 26/33 (79) .04 .04 
IPSS risk categories, n (%)        
    Low 15 (8) 3 (4) 2 (6) 7 (9) 3 (9) .67 .19 
    Intermediate-1 154 (77) 40 (71) 24 (75) 63 (80) 27 (81)   
    Intermediate-2 29 (15) 12 (21) 6 (19) 8 (10) 3 (9)   
    High 2 (1) 1 (2) 1 (1) 0 (0)   
IPSS-R risk categories, n (%)        
    Very good 39 (20) 4 (7) 7 (22) 22 (28) 6 (18) .04 .13 
    Good 113 (57) 33 (60) 18 (56) 42 (53) 20 (60)   
    Intermediate 21 (11) 6 (11) 5 (16) 9 (11) 1 (3)   
    Poor 9 (5) 5 (10) 2 (6) 0 (0) 2 (6)   
    Very poor 18 (9) 8 (14) 0 (0) 6 (8) 4 (8)   
Transfusion dependent, n (%) 34 (17) 5 (9) 4 (13) 16 (21) 9 (27) .12 .01 
Leukemic transformation, n (%) 24 (12) 7 (12) 7 (22) 7 (9) 3 (9) .26 .48 
Deaths, n (%) 156 (73) 49 (82) 22 (85) 60 (38) 25 (76) .23 .19 
Median F/U, mo (range) 33.7 (0-185) 14 (0-121) 23 (1-72) 59 (1-75) 43 (0-185) .20 .10 
VariableMyelodysplastic syndromes without excess blasts
P
RS > 1% (n = 200)RS < 5% (n = 56)RS 5%-14% (n = 32)RS 15%-50% (n = 79)RS > 50% (n = 33)RS%, categories comparedRS%, continuous variable
Median age, y (range) 71 (17-90) 70 (17-87) 66 (25-88) 71 (44-90) 74 (49-89) .05 .02 
Males, n (%) 140 (70) 41 (73) 23 (72) 51 (65) 25 (76) .58 .76 
Median hemoglobin, g/dL (range) 10 (6-16) 10 (7-14) 10.5 (7-15) 10 (6-16) 9 (7-12) .02 .006 
Median MCV, femtoliter (range) 97 (72-120) 95 (72-116) 96 (82-118) 98 (77-120) 98 (78-118) .7 .07 
Median WBC, × 109 cells/L (range) 4 (1-37) 4 (1-37) 4 (1-12) 4 (1-13) 6 (1-18) .20 .43 
Median ANC, × 109 cells/L (range) 2.1 (.2-33) 3 (1-33) 2.8 (0.2-8) 2.8 (1-9) 3.4 (2.2-13) .76 .45 
Median platelets, × 109 cells/L (range) 133 (6-819) 86 (18-505) 84 (15-416) 183 (6-607) 237 (7-819) < .0001 < .0001 
Median BM cellularity, % (range) 70 (10-100) 60 (15-95) 62 (30-100) 70 (10-100) 80 (40-100) .0006 .0025 
Median BM ring sideroblast, % (range) 19 (1-78) 1 (1-4) 8 (5-14) 30 (15-50) 60 (52-78) < .0001 NA 
WHO histologic category, n (%)        
    RARS 56 (20) 43 (54) 13 (39) < .0001 < .0001 
    RCMD 130 (47) 50 (89) 29 (91) 34 (43) 17 (51)   
    MDS-U 14 (7) 6 (11) 3 (9) 2 (3) 3 (9)   
Cytogenetics        
    Normal/Diploid (%) 109 (55) 22 (39) 15 (47) 51 (65) 21 (64) .09 .12 
    Abnormal (%) 91 (45) 34 (61) 17 (53) 28 (35) 12 (36)   
Cytogenetic risk category per IPSS-R, n (%)        
    Very good 11 (6) 5 (10) 3 (9) 0 (0) 3 (9) .01 .008 
    Good 128 (64) 26 (46) 17 (53) 62 (79) 23 (70)   
    Intermediate 20 (10) 7 (13) 5 (16) 7 (9) 1 (3)   
    Poor 20 (10) 10 (18) 4 (13) 5 (6) 1 (3)   
    Very poor 21 (11) 8 (14) 3 (9) 5 (6) 5 (15)   
Molecular profile, n (%)        
    IDH1 3 (2) 0 (0) 2 (6) 1 (1) 0 (0) .84 .9 
    IDH2 17 (9) 6 (11) 3 (9) 7 (9) 1 (3) .69 .25 
    JAK2 5 (3) 0 (0) 2 (6) 1 (1) 2 (6)   
    MPL 1 (1) 1 (2) 0 (0) 0 (0) 0 (0)   
    SF3B1/n* 64/110 (58) 0/10 (0) 5/17 (29) 33/50 (66) 26/33 (79) .04 .04 
IPSS risk categories, n (%)        
    Low 15 (8) 3 (4) 2 (6) 7 (9) 3 (9) .67 .19 
    Intermediate-1 154 (77) 40 (71) 24 (75) 63 (80) 27 (81)   
    Intermediate-2 29 (15) 12 (21) 6 (19) 8 (10) 3 (9)   
    High 2 (1) 1 (2) 1 (1) 0 (0)   
IPSS-R risk categories, n (%)        
    Very good 39 (20) 4 (7) 7 (22) 22 (28) 6 (18) .04 .13 
    Good 113 (57) 33 (60) 18 (56) 42 (53) 20 (60)   
    Intermediate 21 (11) 6 (11) 5 (16) 9 (11) 1 (3)   
    Poor 9 (5) 5 (10) 2 (6) 0 (0) 2 (6)   
    Very poor 18 (9) 8 (14) 0 (0) 6 (8) 4 (8)   
Transfusion dependent, n (%) 34 (17) 5 (9) 4 (13) 16 (21) 9 (27) .12 .01 
Leukemic transformation, n (%) 24 (12) 7 (12) 7 (22) 7 (9) 3 (9) .26 .48 
Deaths, n (%) 156 (73) 49 (82) 22 (85) 60 (38) 25 (76) .23 .19 
Median F/U, mo (range) 33.7 (0-185) 14 (0-121) 23 (1-72) 59 (1-75) 43 (0-185) .20 .10 

MDS indicates myelodysplastic syndromes; RS, ring sideroblasts; RARS, refractory anemia with ring sideroblasts; RCMD, refractory cytopenias with multilineage dysplasia; MDS-U, myelodysplastic syndrome unclassifiable; IPSS, International Prognostic Scoring System; IPSS-R, revised IPSS; and WHO, World Health Organization.

*

Please note that SF3B1 mutational analysis was only performed in 110 of the 200 patients due to limited availability of DNA.

In a univariate analysis, RS% as a continuous variable correlated directly with age (P = .02), platelet count (P < .01), bone marrow cellularity (P < .01), red blood cell transfusion dependency (P = .01), and presence of mutant SF3B1 (P = .04) and inversely with hemoglobin level (P < .01) and presence of multilineage dysplasia (P < .01) or high-risk karyotype (P < .01; Table 1). These associations were also apparent during comparison of patients with < 5% vs 5%-14% vs 15%-50% vs > 50% RS (Table 1). In other words, patients with lower RS% were more likely to be classified as RCMD and carry a high-risk karyotype, as opposed to those with higher RS% where RARS and mutant SF3B1 are more than-represented. Accordingly, IPSS-R risk distribution was significantly affected in favor of patients with higher RS%. Of note, there were no significant differences between the RS% groups in either leukocyte count or IDH mutational frequency (Table 1).

At a median follow-up of 33 months, 156 (73%) deaths and 24 (12%) leukemic transformations were documented. Median survivals were 63 months for MDS with > 50% RS, 43 months for MDS with 15%-50% RS, 35 months for MDS with 5%-14% RS, and 14 months for MDS with < 5% RS (P = .005; supplemental Figure 1, available on the Blood Web site; see the Supplemental Materials link at the top of the online article). However, multivariable analysis did not identify RS%, either as a continuous or categorical variable, to significantly affect overall or leukemia-free survival (Table 2). Instead, independent predictors of overall survival included WHO histologic category and IPSS-R risk category (Table 2). Identifying the WHO histologic category as one of the independent indicators of overall survival emphasizes the importance of recognizing multilineage dysplasia in bone marrows that have increased ring sideroblasts so as to accurately distinguish RCMD from RARS.

Table 2

Univariate and multivariable overall and leukemia-free survival analysis for 200 patients with myelodysplastic syndrome and having < 5% blasts and ≥ 1% ring sideroblasts

VariableOverall survival
Leukemia-free survival
Univariate analysis PMultivariable analysis PUnivariate analysis PMultivariable analysis P
Age .41  .47  
Sex .32  .59  
WHO histologic category < .0001 .02 (RARS) .02 .02 (RARS) 
Hemoglobin level .0004 NS .43  
White blood cell count .69  .20  
Absolute neutrophil count .52  .52  
Platelet count .0007 NS .0035 NS 
Peripheral blood blast, % .01 NS .0019 NS 
Bone marrow blast, % .06 NS .56  
Bone marrow cellularity, % .94  .70  
Bone marrow rings, %* .30  .12  
IDH2 mutational status .34  .36  
IPSS risk category < .0001 NS < .0001 NS 
IPSS-R risk category < .0001 < .0001 < .0001 .02 (Good & Very Good categories) 
IPSS-R karyotype category < .0001 NS < .0001 .01 
Red cell transfusion need at diagnosis .0053 NS .93  
VariableOverall survival
Leukemia-free survival
Univariate analysis PMultivariable analysis PUnivariate analysis PMultivariable analysis P
Age .41  .47  
Sex .32  .59  
WHO histologic category < .0001 .02 (RARS) .02 .02 (RARS) 
Hemoglobin level .0004 NS .43  
White blood cell count .69  .20  
Absolute neutrophil count .52  .52  
Platelet count .0007 NS .0035 NS 
Peripheral blood blast, % .01 NS .0019 NS 
Bone marrow blast, % .06 NS .56  
Bone marrow cellularity, % .94  .70  
Bone marrow rings, %* .30  .12  
IDH2 mutational status .34  .36  
IPSS risk category < .0001 NS < .0001 NS 
IPSS-R risk category < .0001 < .0001 < .0001 .02 (Good & Very Good categories) 
IPSS-R karyotype category < .0001 NS < .0001 .01 
Red cell transfusion need at diagnosis .0053 NS .93  

WHO indicates World Health Organization; RARS, refractory anemia with ring sideroblasts; IPSS, International Prognostic Scoring System; IPSS-R, IPSS-revised; IDH2, isocitrate dehydrogenase 2; and NS, not statistically significant.

*

For the purposes of this analysis the bone marrow ring sideroblast percentage was used as both a continuous and a categorical variable (ie, < 5%, 5%-14%, 15%-50%, > 50%).

Molecular markers have taken center stage in MDS pathogenesis and prognosis.19,20  Specifically, somatic mutations involving IDH1, TP53, EZH2, ETV6, ASXL1, DNMT3A, or RUNX1 have been associated with poor survival and SF3B1 with better survival.20-23  However, the prognostic impact of these mutations, after adjusting for karyotype, BM blast percentage and presence or absence of multilineage dysplasia remains unclear. For example, we have recently demonstrated the lack of morphology-independent prognostic value for SF3B1 mutations in MDS, an observation recently confirmed by others.10,24  In the current study, we show a direct correlation between RS% and mutant SF3B1 in patients with MDS without excess blasts and ≥ 1% RS, including a higher mutational frequency in patients with > 50% RS compared with 15%-49% RS. In addition, patients with higher RS% were less likely to display multilineage dysplasia or high-risk karyotype, which adequately explains the spurious appearance of a favorable prognostic impact from higher RS%. Consistent with this observation, we show that RS% per se does not influence either overall or leukemia-free survival in the context of MDS where the separate consideration of RARS is endorsed by the WHO. The results of the current study underscore the importance of accounting for multilineage dysplasia and karyotype in prognostic studies involving MDS without excess blasts and also suggest the limited practical value of quantifying BM RS.

The online version of this article contains a data supplement.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 USC section 1734.

Contribution: M.M.P., N.H.S., and A.T. designed the study, contributed patients, collected data, performed the statistical analysis, and wrote the paper; T.L.L. participated in study design, primer design, and sequence analysis; J.M.H. reviewed histopathology; R.A.K. reviewed cytogenetic information; R.P.K. reviewed cytogenetic information; C.A.H. reviewed histopathology; and all authors approved the final draft of the paper.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Ayalew Tefferi, MD, Mayo Clinic, 200 First St SW, Rochester, MN 55905; e-mail: [email protected].

1
Mufti
 
GJ
Bennett
 
JM
Goasguen
 
J
, et al. 
Diagnosis and classification of myelodysplastic syndrome: International Working Group on Morphology of myelodysplastic syndrome (IWGM-MDS) consensus proposals for the definition and enumeration of myeloblasts and ring sideroblasts.
Haematologica
2008
, vol. 
93
 
11
(pg. 
1712
-
1717
)
2
Cazzola
 
M
Invernizzi
 
R
Ring sideroblasts and sideroblastic anemias.
Haematologica
2011
, vol. 
96
 
6
(pg. 
789
-
792
)
3
Lasho
 
TL
Finke
 
CM
Hanson
 
CA
, et al. 
SF3B1 mutations in primary myelofibrosis: clinical, histopathology and genetic correlates among 155 patients.
Leukemia
2012
, vol. 
26
 
5
(pg. 
1135
-
1137
)
4
Malcovati
 
L
Della Porta
 
MG
Pietra
 
D
, et al. 
Molecular and clinical features of refractory anemia with ringed sideroblasts associated with marked thrombocytosis.
Blood
2009
, vol. 
114
 
17
(pg. 
3538
-
3545
)
5
Cotter
 
PD
Baumann
 
M
Bishop
 
DF
Enzymatic defect in “X-linked” sideroblastic anemia: molecular evidence for erythroid delta-aminolevulinate synthase deficiency.
Proc Natl Acad Sci U S A
1992
, vol. 
89
 
9
(pg. 
4028
-
4032
)
6
Guernsey
 
DL
Jiang
 
H
Campagna
 
DR
, et al. 
Mutations in mitochondrial carrier family gene SLC25A38 cause nonsyndromic autosomal recessive congenital sideroblastic anemia.
Nat Genet
2009
, vol. 
41
 
6
(pg. 
651
-
653
)
7
Rouault
 
TA
Tong
 
WH
Iron-sulfur cluster biogenesis and human disease.
Trends Genet
2008
, vol. 
24
 
8
(pg. 
398
-
407
)
8
Allikmets
 
R
Raskind
 
WH
Hutchinson
 
A
Schueck
 
ND
Dean
 
M
Koeller
 
DM
Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A).
Hum Mol Genet
1999
, vol. 
8
 
5
(pg. 
743
-
749
)
9
Papaemmanuil
 
E
Cazzola
 
M
Boultwood
 
J
, et al. 
Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts.
N Engl J Med
2011
, vol. 
365
 
15
(pg. 
1384
-
1395
)
10
Patnaik
 
MM
Lasho
 
TL
Hodnefield
 
JM
, et al. 
SF3B1 mutations are prevalent in myelodysplastic syndromes with ring sideroblasts but do not hold independent prognostic value.
Blood
2012
, vol. 
119
 
2
(pg. 
569
-
572
)
11
Visconte
 
V
Makishima
 
H
Jankowska
 
A
, et al. 
SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts.
Leukemia
2011
, vol. 
26
 
3
(pg. 
542
-
545
)
12
Yoshida
 
K
Sanada
 
M
Shiraishi
 
Y
, et al. 
Frequent pathway mutations of splicing machinery in myelodysplasia.
Nature
2011
, vol. 
478
 
7367
(pg. 
64
-
69
)
13
Boultwood
 
J
Pellagatti
 
A
Nikpour
 
M
, et al. 
The role of the iron transporter ABCB7 in refractory anemia with ring sideroblasts.
PLoS One
2008
, vol. 
3
 
4
pg. 
e1970
 
14
Pellagatti
 
A
Cazzola
 
M
Giagounidis
 
AA
, et al. 
Gene expression profiles of CD34+ cells in myelodysplastic syndromes: involvement of interferon-stimulated genes and correlation to FAB subtype and karyotype.
Blood
2006
, vol. 
108
 
1
(pg. 
337
-
345
)
15
Greenberg
 
P
Tuechler
 
H
Schanz
 
J
, et al. 
Revised International Prognostic Scoring System (IPSS-R) developed by the International Working Group for Prognosis in MDS (IWG-PM).
Leuk Res
2011
, vol. 
35
 pg. 
S6
 
16
Pardanani
 
AD
Levine
 
RL
Lasho
 
T
, et al. 
MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients.
Blood
2006
, vol. 
108
 
10
(pg. 
3472
-
3476
)
17
Tefferi
 
A
Lasho
 
TL
Abdel-Wahab
 
O
, et al. 
IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis.
Leukemia
2010
, vol. 
24
 
7
(pg. 
1302
-
1309
)
18
Tefferi
 
A
Lasho
 
TL
Huang
 
J
, et al. 
Low JAK2V617F allele burden in primary myelofibrosis, compared with either a higher allele burden or unmutated status, is associated with inferior overall and leukemia-free survival.
Leukemia
2008
, vol. 
22
 
4
(pg. 
756
-
761
)
19
Bejar
 
R
Stevenson
 
K
Abdel-Wahab
 
O
, et al. 
Clinical effect of point mutations in myelodysplastic syndromes.
N Engl J Med
2011
, vol. 
364
 
26
(pg. 
2496
-
2506
)
20
Patnaik
 
MM
Hanson
 
CA
Hodnefield
 
JM
, et al. 
Differential prognostic effect of IDH1 versus IDH2 mutations in myelodysplastic syndromes: a Mayo Clinic study of 277 patients.
Leukemia
2012
, vol. 
26
 
1
(pg. 
101
-
105
)
21
Bejar
 
R
Ebert
 
BL
The genetic basis of myelodysplastic syndromes.
Hematol Oncol Clin North Am
2010
, vol. 
24
 
2
(pg. 
295
-
315
)
22
Bejar
 
R
Levine
 
R
Ebert
 
BL
Unraveling the molecular pathophysiology of myelodysplastic syndromes.
J Clin Oncol
2011
, vol. 
29
 
5
(pg. 
504
-
515
)
23
Walter
 
MJ
Ding
 
L
Shen
 
D
, et al. 
Recurrent DNMT3A mutations in patients with myelodysplastic syndromes.
Leukemia
2011
, vol. 
25
 
7
(pg. 
1153
-
1158
)
24
Damm
 
F
Kosmider
 
O
Gelsi-Boyer
 
V
, et al. 
Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes.
Blood
2012
, vol. 
119
 
14
(pg. 
3211
-
3218
)

Supplemental data

Sign in via your Institution