Abstract 2487


The molecular drivers of adult AML as well as the determinants of drug response are poorly understood. While AML genomes have recently been sequenced, many cases do not harbor druggable mutations. Treatment options are particularly limited for relapsed and refractory AML. Due to the molecular heterogeneity of the disease, optimal therapy would likely consist of individualized combinations of targeted and non-targeted drugs, which poses significant challenges for the conventional paradigm of clinical drug testing. In order to better understand the molecular driver signals, identify individual variability of drug response, and to discover clinically actionable therapeutic combinations and future opportunities with emerging drugs, we established a diagnostic ex-vivo drug sensitivity and resistance testing (DSRT) platform for adult AML covering the entire cancer pharmacopeia as well as many emerging anti-cancer compounds.


DSRT was implemented for primary cells from adult AML patients, focusing on relapsed and refractory cases. Fresh mononuclear cells from bone marrow aspirates (>50% blast count) were screened in a robotic high-throughput screening system using 384-well plates. The primary screening panel consisted of a comprehensive collection of FDA/EMA-approved small molecule and conventional cytotoxic drugs (n=120), as well as emerging, investigational and pre-clinical oncology compounds (currently n=90), such as major kinase (e.g. RTKs, checkpoint and mitotic kinases, Raf, MEK, JAKs, mTOR, PI3K), and non-kinase inhibitors (e.g. HSP, Bcl, activin, HDAC, PARP, Hh). The drugs are tested over a 10,000-fold concentration range resulting in a dose-response curve for each compound and with combinations of effective drugs explored in follow-up screens. The same samples also undergo deep molecular profiling including exome- and transcriptome sequencing, as well as phosphoproteomic analysis.


DSRT data from 11 clinical AML samples and 2 normal bone marrow controls were bioinformatically processed and resulted in several exciting observations. First, overall drug response profiles of the AML samples and the controls were distinctly different suggesting multiple leukemia-selective inhibitory effects. Second, the MEK and mTOR signaling pathways emerged as potential key molecular drivers of AML cells when analyzing targets of leukemia-specific active drugs. Third, potent new ex-vivo combinations of approved targeted drugs were uncovered, such as mTOR pathway inhibitors with dasatinib. Fourth, data from ex-vivo DSRT profiles showed excellent agreement with clinical response when serial samples were analyzed from leukemia patients developing clinical resistance to targeted agents.


The rapid and comprehensive DSRT platform covering the entire cancer pharmacopeia and many emerging agents has already generated powerful insights into the molecular events underlying adult AML, with significant potential to facilitate individually optimized combinatorial therapies, particularly for recurrent leukemias. DSRT will also serve as a powerful hypothesis-generator for clinical trials, particularly for emerging drugs and drug combinations. The ability to correlate response profiles of hundreds of drugs in clinical ex vivo samples with deep molecular profiling data will yield exciting new translational and pharmacogenomic opportunities for clinical hematology.


Mustjoki:Novartis: Honoraria; Bristol-Myers Squibb: Honoraria. Porkka:Novartis: Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding. Kallioniemi:Abbot/Vysis: Patents & Royalties; Medisapiens: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Bayer Schering Pharma: Research Funding; Roche: Research Funding.

Author notes


Asterisk with author names denotes non-ASH members.

Sign in via your Institution