Abstract

Diffuse large B-cell lymphomas (DLBCLs) can be divided into germinal-center B cell–like (GCB) and activated-B cell–like (ABC) subtypes by gene-expression profiling (GEP), with the latter showing a poorer outcome. Although this classification can be mimicked by different immunostaining algorithms, their reliability is the object of controversy. We constructed tissue microarrays with samples of 157 DLBCL patients homogeneously treated with immunochemotherapy to apply the following algorithms: Colomo (MUM1/IRF4, CD10, and BCL6 antigens), Hans (CD10, BCL6, and MUM1/IRF4), Muris (CD10 and MUM1/IRF4 plus BCL2), Choi (GCET1, MUM1/IRF4, CD10, FOXP1, and BCL6), and Tally (CD10, GCET1, MUM1/IRF4, FOXP1, and LMO2). GEP information was available in 62 cases. The proportion of misclassified cases by immunohistochemistry compared with GEP was higher when defining the GCB subset: 41%, 48%, 30%, 60%, and 40% for Colomo, Hans, Muris, Choi, and Tally, respectively. Whereas the GEP groups showed significantly different 5-year progression-free survival (76% vs 31% for GCB and activated DLBCL) and overall survival (80% vs 45%), none of the immunostaining algorithms was able to retain the prognostic impact of the groups (GCB vs non-GCB). In conclusion, stratification based on immunostaining algorithms should be used with caution in guiding therapy, even in clinical trials.

Introduction

Diffuse large B-cell lymphoma (DLBCL), although considered a single category in the World Health Organization classification, most likely includes different clinicopathologic entities difficult to separate using standard techniques.1,2  From the clinical standpoint, the introduction of immunochemotherapy in the treatment of DLBCL has dramatically improved the outcome of these patients compared with chemotherapy alone.3-8  However, a significant proportion of these patients (20%-30%) become refractory or eventually relapse.9  Therefore, the identification of factors, either biologic or clinical, that can identify patients at a higher risk is a priority. Different prognostic factors for response and survival have been described for DLBCL, but in the rituximab era, the role of these biologic prognostic factors has yet to be determined.10 

DLBCLs can be divided by gene-expression profiling (GEP) studies into germinal center B cell–like (GCB) and activated B cell–like (ABC) subtypes, with the latter having a significantly poorer outcome than the GCB group.11  These molecular subtypes are associated with different outcomes, even after the introduction of immunochemotherapy.12  However, GEP techniques are not applicable to the routine clinical practice, and different approaches using immunophenotypic algorithms with small panels of biomarkers have been developed to translate the robust information from molecular studies into a routine clinical platform.13-17  Two of these algorithms were designed in the preimmunotherapy era and the other 3 were used in cohorts of patients treated with rituximab. The biomarkers used included the GCB markers CD10, BCL6, GCET1, and LMO2 and antigens related to postgerminal center (non-GCB) differentiation, such as MUM1/IRF4 and FOXP1. In addition, the categorization of DLBCL into a GCB or non-GCB subgroup was shown to be associated with clinicopathologic features of tumors and predicted patient outcome in some studies but not in others.13-23  The reasons for these contradictory results may be complex, and include difficulties in the standardization of both the staining methodologies and evaluation of the results24  and heterogeneity in the characteristics of the patients in the different studies.13-18  However, it is not clear whether any of the algorithms is superior to the others in obtaining GEP molecular information, because a comparative study using all of them has not been performed and only 3 studies have associated the immunophenotypic algorithm with the GEP molecular classification.

The aim of the present study was to compare the above-mentioned algorithms in a series of patients with DLBCL homogeneously treated with immunochemotherapy to assess their correlation with GEP data and their usefulness in predicting patient outcome.

Methods

Patients

Two-hundred eighty-seven patients were diagnosed with DLBCL from January 2002 to December 2006 in 5 institutions from the Grup per l'Estudi dels Limfomes de Catalunya i Balears (GELCAB). Patients with a recognized disease phase of follicular lymphoma or another type of indolent lymphoma with subsequent transformation into a DLBCL, as well as those with immunodeficiency-associated tumors, posttransplant lymphoproliferative disorders, and those with intravascular, central nervous system, primary effusion, or primary mediastinum lymphomas were excluded from the study. In 157 of 287 patients, the material necessary to construct a tissue microarray (TMA) and to assess the expression of the different antigens was available. These patients constituted the subjects of the present study. No significant differences were observed regarding main initial features and outcome between the 157 patients with available TMA and the remainder (data not shown). The study was approved by the Ethical Committee of the Hospital Clínic, University of Barcelona. Informed consent was obtained in accordance with the Declaration of Helsinki.

Staging measures included patient history and physical examination; blood cell counts; serum biochemistry, including lactate dehydrogenase (LDH) and β2-microglobulin (β2m) levels; chest, abdomen, and pelvis computerized tomography scans; and bone marrow biopsy. Posttherapy restaging consisted of a repetition of the previous tests and/or biopsies. Response was assessed according to conventional criteria.25 

The median age of the patients was 65 years (range 17-91) and the male/female distribution was 77/80. The main characteristics of the patients are listed in Table 1. All patients received rituximab-containing chemotherapies, including regimens with anthracyclines in 133 (85%) patients. Response to treatment was as follows: 119 (76%) complete responses (CRs), 4 partial responses (2%), and 34 nonresponses (22%). The median follow-up for surviving patients was 4.3 years (range 0.8-8.6). The 5-year progression free-survival (PFS) of the series was 50% (95% CI: 42%-58%). Sixty-one patients died during the follow-up, with a 5-year overall survival (OS) of 58% (95% CI: 50%-66%). PFS and OS curves are shown in Figure 1. The main initial and evolutive variables, including the histologic parameters indicated in “Histologic review and TMA construction,” were recorded and analyzed for prognosis.

Table 1

Initial and evolutive features of 157 patients with DLBCL

Feature n (%) 
Age  
    median (range) 65 (17-91) 
     ≤ 60 y 65 (41%) 
Sex  
    Female 80 (51%) 
    Male 77 (49%) 
Poor performance status (ECOG-PS> 1) 66 (42%) 
B-symptoms 55 (35%) 
Extranodal involvement 63 (40%) 
Bone marrow involvement 46 (29%) 
Ann Arbor stage III-IV 94 (60%) 
High serum LDH 93 (59%) 
High serum β2-m* 64 (47%) 
IPI  
    Low risk 47 (30%) 
    Low/intermediate risk 35 (22%) 
    High/intermediate risk 38 (25%) 
    High risk 37 (23%) 
Response to therapy  
    CR 119 (76%) 
    Partial response 4 (2%) 
    Nonresponse/progression 34 (22%) 
Feature n (%) 
Age  
    median (range) 65 (17-91) 
     ≤ 60 y 65 (41%) 
Sex  
    Female 80 (51%) 
    Male 77 (49%) 
Poor performance status (ECOG-PS> 1) 66 (42%) 
B-symptoms 55 (35%) 
Extranodal involvement 63 (40%) 
Bone marrow involvement 46 (29%) 
Ann Arbor stage III-IV 94 (60%) 
High serum LDH 93 (59%) 
High serum β2-m* 64 (47%) 
IPI  
    Low risk 47 (30%) 
    Low/intermediate risk 35 (22%) 
    High/intermediate risk 38 (25%) 
    High risk 37 (23%) 
Response to therapy  
    CR 119 (76%) 
    Partial response 4 (2%) 
    Nonresponse/progression 34 (22%) 
*

β2m levels were available in 135 cases.

ECOG-PS indicates Eastern Cooperative Oncology Group performance status.

Figure 1

PFS and OS of 157 patients with DLBCL.

Figure 1

PFS and OS of 157 patients with DLBCL.

Histologic review and TMA construction

The diagnosis of DLBCL was based on the criteria established in the World Health Organization classification.1  The diagnostic samples were reviewed by expert hematopathologists from the 5 hospitals of the GELCAB involved in the study. All immunohistochemical studies were performed after constructing TMAs, including two 1-mm representative cores of each case using a tissue arrayer (MTA I; Beecher Instruments). Standardized methods for tissue fixation (10% buffered formalin) and processing were used at all participating centers. The immunostains were performed on formalin-fixed, paraffin-embedded tissue sections using a fully automated immunostainer (Bond-Max; Vision BioSystems). All immunostains were centralized in one of the centers involved in the study and evaluated in common in a multiheaded microscope. The conditions and antibodies are shown in Table 2. CD10, BCL6 (kindly provided by Dr M. A. Piris, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain), MUM1/IRF4, BCL2, FOXP1 (kindly provided by Dr A. H. Banham, John Radcliffe Hospital, Oxford, United Kingdom), GCET1 (kindly provided by Dr M. A. Piris), and LMO2 were the markers used to build the algorithms. The assessment of CD10, BCL6, MUM1/IRF4, and BCL2 was performed according to the original studies describing the algorithms and following the recent guidelines recommended for their interpretation by the Lunenburg Lymphoma Biomarker Consortium. Appropriate internal controls were necessary to evaluate the immunostains.26  FOXP1, GCET1, and LMO2 were evaluated based on previous publications.27-29  Endothelial cells were used as internal controls for FOXP1 and LMO2. For GCET1, tonsil sections were used as an external control.

Table 2

Immunophenotyping study: antibodies and conditions of use

Antigen Source Dilution Incubation, min 
CD20/CD79a Dako 1:80 30 
CD10 Novocastra 1:25 30 
BCL6 Centro Nacional de Investigaciones Oncológicas 1:25 60 
GCET1 Centro Nacional de Investigaciones Oncológicas 1:1 30 
HGAL Dako 1:500 60 
IRF8 Santa Cruz Biotechnology Sc 13043 rabbit polyclonal 1:100 60 
LMO2 Santa Cruz Biotechnology Sc 65736 mouse monoclonal 1:4000 60 
JAW1 Santa Cruz Biotechnology Sc 11688 goat polyclonal 1:100 60 
MUM1/IRF4 Dako 1:400 60 
FOXP1 A. H. Banham 1:80 30 
BLIMP1 Santa Cruz Biotechnology Sc 13206 1:2 60 
XBP1 Santa Cruz Biotechnology Sc 7160 1:400 120 
BCL2 Dako 1:75 60 
Antigen Source Dilution Incubation, min 
CD20/CD79a Dako 1:80 30 
CD10 Novocastra 1:25 30 
BCL6 Centro Nacional de Investigaciones Oncológicas 1:25 60 
GCET1 Centro Nacional de Investigaciones Oncológicas 1:1 30 
HGAL Dako 1:500 60 
IRF8 Santa Cruz Biotechnology Sc 13043 rabbit polyclonal 1:100 60 
LMO2 Santa Cruz Biotechnology Sc 65736 mouse monoclonal 1:4000 60 
JAW1 Santa Cruz Biotechnology Sc 11688 goat polyclonal 1:100 60 
MUM1/IRF4 Dako 1:400 60 
FOXP1 A. H. Banham 1:80 30 
BLIMP1 Santa Cruz Biotechnology Sc 13206 1:2 60 
XBP1 Santa Cruz Biotechnology Sc 7160 1:400 120 
BCL2 Dako 1:75 60 

The diagnostic samples and immunohistochemical studies were reviewed by at least 3 expert hematopathologists blinded to the clinical details. The cores were evaluated in a semiquantitative manner, and all markers used to build the algorithms were dichotomized at a positive cutoff that depended on the algorithm used. Small biopsy samples that could not be included in a TMA and cores that dropped off of the TMAs were studied as whole-tissue sections. For individual cores with discordant results, the core with the most representative and highest number of positive cells was scored. The discrepancies between the observers were resolved by reaching consensus.

In addition to the markers included in the immunophenotypic algorithms, we also studied the new GCB markers HGAL, IRF8, and JAW1 and the non-GCB markers XBP1 and BLIMP1. These additional biomarkers were evaluated semiquantitatively and the samples were stratified into 5 groups according to the percentages of positive tumor cells: 1 (0%- ≤ 10%), 2 (10%-25%), 3 (26%-50%), 4 (51%-75%), and 5 (≥ 75%). The positive values and cutoff for these new markers was assessed based on previous studies.29-32 

Immunophenotypic algorithms

To determine the origin of GCB or non-GCB, we applied 5 different algorithms described previously using the following panel of antibodies: CD10, BCL6, MUM1/IRF4, GCET1, FOXP1, LMO2, and BCL2. The thresholds used were those described previously in the literature for each algorithm and are detailed in Figure 2. In the Colomo algorithm (Figure 2A), the non-GCB phenotype was established if MUM1/IRF4 was positive. The cases that were negative for MUM1/IRF4 and positive for CD10 were considered to be the GCB phenotype. Cases negative for MUM1/IRF4 and CD10 and positive for BCL6 were also assigned to the GCB group. Finally, cases negative for the 3 markers were considered as not classified.13  For the Hans algorithm (Figure 2B), the cases were assigned to the GCB phenotype if CD10 alone or both CD10 and BCL6 were positive. If both CD10 and BCL6 were negative, the case was considered to be of non-GCB origin.14  In the Muris algorithm (Figure 2C), cases positive for CD10 were assigned to the GCB phenotype. Cases negative for CD10 were differentiated according to MUM1/IRF4 expression into the ABC or the GCB phenotype. Thereafter, BCL2 immunostaining was used to separate 2 different prognostic groups (1 and 2).15  The 2 steps of the Muris algorithm were used to assess GCB versus ABC status and the prognostic impact of the algorithms was applied. In the Choi algorithm (Figure 2D), the cases positive for MUM1/IRF4 and/or FOXP1 or negative for CD10 and BCL6 were assigned to the non-GCB group. The cases positive for CD10, GCET1 without MUM1 expression, or positive for BCL6 without FOXP1 expression were classified as GCB.16  In the Tally algorithm (Figure 2E) described recently, the method included an equal number of GCB markers (GCET1 and CD10) and non-GCB markers (FOXP1 and MUM1/IRF4). This algorithm was constructed from the immunophenotype pair with more positive antigens. Because 2 antibodies are used for each type, the LMO2 antigen determines the phenotype (GCB or non-GCB) when the score is equal in the 2 categories.17 

Figure 2

Five immunostaining algorithms used to assess differentiation profile (GCB vs non-GCB) in patients with DLBCL.

Figure 2

Five immunostaining algorithms used to assess differentiation profile (GCB vs non-GCB) in patients with DLBCL.

GEP

A subset of 62 samples with RNA extracted from fresh frozen lymph nodes was investigated using Affymetrix HG U133 plus 2.0 gene expression arrays. All gene expression array data were normalized using MAS5.0 software, and were log2 transformed. We used the Bayesian compound covariate predictor of the ABC/GCB DLBCL described previously.12,33  All samples predicted as ABC DLBCL at greater than 90% were called ABC DLBCL. The samples that showed less than 10% of probability of being called ABC DLBCL were classified as GCB DLBCL. All the other cases were considered unclassified DLBCL.

Statistical analysis

The definitions of CR, PFS, and OS were according to standard criteria.25  Categorical data were compared using the Fisher exact test and the 2-sided P value, whereas nonparametric tests were used for ordinal data. The multivariate analysis of the variables predicting response was performed with the logistic regression method.34  The actuarial survival analysis was performed according to the Kaplan-Meier method, and the curves were compared with the log-rank test.35  The multivariate analysis for survival was performed using the stepwise proportional hazards model (Cox).36 

Results

Immunophenotypic profile

The immunohistochemistry expression of single antigens is detailed in Table 3. The distribution of the patients according to the differentiation phenotype (GCB vs non-GCB) after applying the different algorithms is shown in Table 4. The distribution of the cases according to the phenotype was similar for the Colomo and Hans algorithms. In the Choi and Tally algorithms, the proportion of non-GCB cases assigned was significantly higher (non-GCB vs GCB, 67% vs 33%, and 63% vs. 37%, respectively). In the Muris algorithm, the majority of the cases were allocated as the GCB phenotype (GCB vs non-GCB, 57% vs 43%). The Colomo algorithm is the only one of the 5 algorithms that considers a category of “not classified,” and 23 tumors were included in this group. Although most of these cases would be categorized in the non-GCB subtype in the other classifiers, we excluded the Colomo algorithm for the comparison between the other algorithms. Therefore, the other 4 algorithms (Hans, Muris, Choi, and Tally) were completely assessed in 135 patients, with 111 cases (82%) being allocated to the same GCB or non-GCB group.

Table 3

Immunohistochemical expression of single antigens in 157 patients

Antigen No. of assessable samples No. of positive samples (%) 
CD10* 157 41 (26%) 
BCL6* 146 94 (64%) 
GCET1* 146 67 (46%) 
HGAL 139 61 (44%) 
IRF8 147 42 (29%) 
LMO2* 143 60 (42%) 
Jaw1 149 126 (85%) 
MUM1/IRF4* 148 41 (28%) 
FOXP1* 143 112 (78%) 
BLIMP1 147 66 (45%) 
XBP1 104 28 (27%) 
BCL2* 152 76 (50%) 
Antigen No. of assessable samples No. of positive samples (%) 
CD10* 157 41 (26%) 
BCL6* 146 94 (64%) 
GCET1* 146 67 (46%) 
HGAL 139 61 (44%) 
IRF8 147 42 (29%) 
LMO2* 143 60 (42%) 
Jaw1 149 126 (85%) 
MUM1/IRF4* 148 41 (28%) 
FOXP1* 143 112 (78%) 
BLIMP1 147 66 (45%) 
XBP1 104 28 (27%) 
BCL2* 152 76 (50%) 
*

Antigens used to build up the algorithms.

Table 4

Distribution, CR rate, PFS, and OS of 157 patients with DLBCL according to immunophenotype (GCB vs non-GCB)

Algorithm n (%) CR rate, n (%) 5-year PFS 5-year OS 
Colomo     
    GCB 53 (44%) 39 (74%) 48% 54% 
    Non-GCB 68 (56%) 53 (78%) 55% 62% 
Hans     
    GCB 61 (41%) 47 (77%) 54% 60% 
    Non-GCB 88 (59%) 67 (76%) 52% 59% 
Muris     
    GCB 87 (57%) 63 (72%) 48% 57% 
    Non-GCB 65 (43%) 51 (78%) 56% 63% 
Choi     
    GCB 45 (33%) 32 (71%) 48% 54% 
    Non-GCB 90 (67%) 70 (78%) 52% 61% 
Tally     
    GCB 55 (37%) 45 (82%) 63% 56% 
    Non-GCB 92 (63%) 65 (71%) 54% 47% 
Algorithm n (%) CR rate, n (%) 5-year PFS 5-year OS 
Colomo     
    GCB 53 (44%) 39 (74%) 48% 54% 
    Non-GCB 68 (56%) 53 (78%) 55% 62% 
Hans     
    GCB 61 (41%) 47 (77%) 54% 60% 
    Non-GCB 88 (59%) 67 (76%) 52% 59% 
Muris     
    GCB 87 (57%) 63 (72%) 48% 57% 
    Non-GCB 65 (43%) 51 (78%) 56% 63% 
Choi     
    GCB 45 (33%) 32 (71%) 48% 54% 
    Non-GCB 90 (67%) 70 (78%) 52% 61% 
Tally     
    GCB 55 (37%) 45 (82%) 63% 56% 
    Non-GCB 92 (63%) 65 (71%) 54% 47% 

GEP: concordance with immunohistochemistry

GEP data were available for 62 patients: 30 cases were allocated to GCB origin (48%), 22 cases to ABC origin (36%), and 10 cases (16%) were considered unclassified. No differences in terms of initial features and outcome were observed between the patients with GEP information and those without (data not shown).

The relationship between the expression of single antigens and GEP is shown in Table 5. Only CD10 and JAW1 expression were significantly correlated with GCB origin according to GEP (P = .007 and P = .01, respectively), whereas MUM1/IRF4 expression was correlated with ABC origin (P = .02).

Table 5

Correlation between GEP and different single antigens in 52 DLBCL patients with available microarray data

Antigen GEP
 
No. of assessable patients GCB, n (%) ABC, n (%) 
CD10* (−) (+) 52 19 (47) 11 (92) 21 (53) 1 (8) 
BCL6 (−) (+) 48 12 (44) 15 (71) 15 (56) 6 (36) 
MUM1/IRF4 (−) (+) 49 22 (68) 6 (35) 10 (32) 11 (65) 
IRF8 (−) (+) 50 21 (64) 7 (41) 12 (34) 10 (59) 
GCET1 (−) (+) 48 12 (52) 16 (64) 11 (48) 9 (36) 
GCET2 (−) (+) 50 12 (55) 16 (57) 10 (45) 12 (43) 
FOXP1 (−) (+) 49 6 (86) 21 (50) 1 (14) 21 (50) 
LMO2 (−) (+) 48 10 (48) 18 (67) 11 (52) 9 (33) 
JAW1 (−) (+) 50 0 (0) 29 (63) 4 (100) 17 (37) 
BLIMP1 (−) (+) 49 14 (54) 15 (65) 12 (46) 8 (35) 
XBP1 (−) (+) 25 10 (63) 7 (78) 6 (37) 2 (22) 
BCL2 (−) (+) 51 20 (67) 9 (43) 10 (33) 12 (21) 
Antigen GEP
 
No. of assessable patients GCB, n (%) ABC, n (%) 
CD10* (−) (+) 52 19 (47) 11 (92) 21 (53) 1 (8) 
BCL6 (−) (+) 48 12 (44) 15 (71) 15 (56) 6 (36) 
MUM1/IRF4 (−) (+) 49 22 (68) 6 (35) 10 (32) 11 (65) 
IRF8 (−) (+) 50 21 (64) 7 (41) 12 (34) 10 (59) 
GCET1 (−) (+) 48 12 (52) 16 (64) 11 (48) 9 (36) 
GCET2 (−) (+) 50 12 (55) 16 (57) 10 (45) 12 (43) 
FOXP1 (−) (+) 49 6 (86) 21 (50) 1 (14) 21 (50) 
LMO2 (−) (+) 48 10 (48) 18 (67) 11 (52) 9 (33) 
JAW1 (−) (+) 50 0 (0) 29 (63) 4 (100) 17 (37) 
BLIMP1 (−) (+) 49 14 (54) 15 (65) 12 (46) 8 (35) 
XBP1 (−) (+) 25 10 (63) 7 (78) 6 (37) 2 (22) 
BCL2 (−) (+) 51 20 (67) 9 (43) 10 (33) 12 (21) 
*

P = .007.

P = .01.

P = .02.

The concordance between the GEP profiles and the patterns of immunohistochemistry as assessed by the 5 algorithms is shown in Table 6. A significant correlation was observed between GEP data and the Colomo (P = .02), Hans (P = .015), Muris (P = .04), and Tally (P = .02) algorithms, whereas the correlation did not reach significance with Choi algorithm (P = .1). A higher percentage of misclassified cases was observed in the GCB than in the non-GCB subgroup. The proportion of GCB-DLBCL cases that were not correctly allocated by immunohistochemistry was 41%, 48%, 30%, 60%, and 46% for the Colomo, Hans, Muris, Choi, and Tally algorithms, respectively. Conversely, the proportion of ABC patients who were not properly assigned according to the different algorithms was 19%, 15%, 38%, 16%, and 20% for the Colomo, Hans, Muris, Choi, and Tally algorithms, respectively. The sensitivity in the GCB group was 59%, 52%, 70%, 40%, and 53% for the Colomo, Hans, Muris, Choi, and Tally algorithms, respectively; the sensitivity in the non-GCB group was 81%, 85%, 62%, 84%, and 80%, respectively.

Table 6

Concordance between GEP (GCB vs ABC) and the immunohistochemistry patterns (GCB vs non-GCB) as assessed by 5 algorithms in 52 patients with available GEP information

Algorithm GEP
 
GCB, n (%) ABC, n (%) 
Colomo*   
    GCB 13 (59%) 3 (19%) 
    Non-GCB 9 (41%) 13 (81%) 
Hans   
    GCB 15 (52%) 3 (15%) 
    Non-GCB 14 (48%) 17 (85%) 
Muris   
    GCB 21 (70%) 8 (38%) 
    Non-GCB 9 (30%) 13 (62%) 
Choi§   
    GCB 10 (40%) 3 (16%) 
    Non-GCB 15 (60%) 16 (84%) 
Tally   
    GCB 15 (54%) 4 (20%) 
    Non-GCB 13 (46%) 16 (80%) 
Algorithm GEP
 
GCB, n (%) ABC, n (%) 
Colomo*   
    GCB 13 (59%) 3 (19%) 
    Non-GCB 9 (41%) 13 (81%) 
Hans   
    GCB 15 (52%) 3 (15%) 
    Non-GCB 14 (48%) 17 (85%) 
Muris   
    GCB 21 (70%) 8 (38%) 
    Non-GCB 9 (30%) 13 (62%) 
Choi§   
    GCB 10 (40%) 3 (16%) 
    Non-GCB 15 (60%) 16 (84%) 
Tally   
    GCB 15 (54%) 4 (20%) 
    Non-GCB 13 (46%) 16 (80%) 
*

P = .02.

P = .02.

P = .04.

§

P = .1.

P = .02.

Clinical significance of GEP and immunohistochemistry profiles

The CR rate of the series was 76%. CR achievement was observed more frequently in patients with absence of B-symptoms, ambulatory performance status, absence of extranodal involvement or bulky mass, normal serum β2-m, adriamycin-containing chemotherapy, and low-risk International Prognostic Index (IPI) scores. Neither single-antigen expression nor the differentiation profile as assessed by the immunohistochemistry algorithms was able to predict CR (Table 4). GEP profiles also did not predict CR.

Seventy-four of 157 patients eventually progressed, including 36 of the 119 patients who reached a CR. The 5-year PFS was 50% (95% CI: 42%-58%; Figure 1). Variables with unfavorable prognostic value for PFS were: presence of B-symptoms, nonambulatory Eastern Cooperative Oncology Group performance status (ECOG-PS > 1), extranodal involvement at ≥ 1 sites, advanced Ann Arbor stage (III-IV), high serum LDH, high serum β2-m levels, and high-risk IPI score. High BCL2 protein expression also predicted poor PFS (5-year PFS 27% vs 56% for BCL2 > 75% vs ≤ 75%, respectively; P = .003). In addition, the differentiation profile (GCB vs ABC) as assessed by GEP was able to predict PFS (5-year PFS, 76% vs 31%, respectively; P = .005), as shown in Figure 3A. Conversely, the immunophenotypic profiles as assessed by the 5 different algorithms did not show significant prognostic value for PFS (Table 4).

Figure 3

PFS and OS of 52 patients with GEP data available according to molecular subtype (GCB vs ABC) profile.

Figure 3

PFS and OS of 52 patients with GEP data available according to molecular subtype (GCB vs ABC) profile.

Sixty-one patients died during follow-up, with a 5-year OS of 58% (95% CI: 50%-66%; Figure 1). Unfavorable variables predicting OS were: age > 60 years, poor performance status (ECOG-PS > 1), advanced Ann Arbor stage (III-IV), high serum LDH levels, high serum β2-m level, and high-risk IPI score. Patients treated with adriamycin-containing chemotherapy also showed a significant advantage in terms of OS. Among the single antigens tested, only BCL2 overexpression (> 75%) was correlated with poor OS. Differentiation profile as assessed by GEP (GCB vs ABC) showed a significant prognostic value for OS in the subset of patients with this GEP information, with a 5-year OS of 80% vs 45%, respectively (P = .03; Figure 3B). In contrast, none of the profiles assessed by immunostaining was able to predict OS, as shown in Table 4 and Figure 4. When the 2-step Muris algorithm, which included BCL2 immunostaining, was used, the algorithm was also unable to predict OS (5-year OS 59% vs. 48% for groups 1 and 2, respectively; P = .4). The results were the same when the study was performed in 133 patients receiving strictly R-CHOP (cyclophosphamide, hydroxydaunorubicin, oncovin, and prednisone/prednisolone plus rituximab; supplemental Figures 1-2, available on the Blood Web site; see the Supplemental Materials link at the top of the online article). A multivariate analysis was performed in the 52 patients with GEP information, including differentiation profile (GCB vs ABC profile), BCL2 expression (≤ 75% vs > 75%), and IPI score. In the final model with 52 cases, differentiation profile was the most important variable in predicting OS (risk ratio 3.3; P = .04).

Figure 4

OS of 157 patients with DLBCL according to the differentiation profile (GCB vs non-GCB) as assessed by 5 immunohistochemistry algorithms. (A) Colomo algorithm, (B) Hans algorithm, (C) Muris algorithm, (D) Choi algorithm, and (E) Tally algorithm.

Figure 4

OS of 157 patients with DLBCL according to the differentiation profile (GCB vs non-GCB) as assessed by 5 immunohistochemistry algorithms. (A) Colomo algorithm, (B) Hans algorithm, (C) Muris algorithm, (D) Choi algorithm, and (E) Tally algorithm.

Discussion

Two types of DLBCL can be recognized on the basis of GEP data: GCB-DLBCL and ABC-DLBCL. These groups have a different cell origin and a distinct clinical behavior, with patients carrying an ABC-DLBCL tumor showing a poorer outcome than patients with a GCB tumor.11  This fact, originally described in the pre-rituximab era, has been recently confirmed in patients receiving immunochemotherapy.12  In addition to the prognostic interest, the molecular classification might be useful in selecting treatments that could be active only in specific subtypes of DLBCL, such as the effective use of bortezomib in ABC-DLBCLs.37-39  Therefore, GEP information is not only of academic interest, but could also be an important decision element in the management of the patients in the near future. Unfortunately, GEP assessment using microarrays is not feasible in routine clinical practice. For this reason, different attempts have been made at capturing the prognostic categorization of GEP information using a more friendly technical approach such as immunohistochemistry. This method can be performed in archival, formalin-fixed, paraffin-embedded tissues and is feasible at any pathology laboratory. Different algorithms have been created combining the expression of well-known antigens, including the ones analyzed in the present study (Colomo, Hans, Muris, Choi, and Tally; Figure 2).13-17  The real value of these algorithms as a surrogate for GEP data and to define the prognosis of patients with DLBCL is the subject of controversy and was the reason for the present study.

This study was performed in a homogeneous and representative series of patients with DLBCL diagnosed and treated with immunochemotherapy in 5 hospitals from the GELCAB. Clinical features and outcome were as expected for an unselected series of DLBCLs. TMA construction and the assessment of the different antigens were performed based on information from original descriptions.13-17  Although a significant association between GEP and immunophenotypic profiles was observed (Table 6), the positive and negative predictive values were poor for the 5 algorithms tested. In fact, 30%-50% of GCB-DLBCLs and 15%-25% of ABC-DLBCLs were incorrectly allocated by immunohistochemistry, making its use difficult in clinical practice. Furthermore, in prognostic terms, the applicability of the algorithms was poor in the current series. Although, the number of cases studied by GEP was relative low, the molecular GCB and ABC subtypes showed a clearly differentiated outcome in terms of PFS and OS. As reflected in Figure 4, none of the 5 algorithms was capable of defining groups with prognostic impact.

The current results contradict other studies supporting an excellent correlation between immunohistochemistry and GEP in terms of prognosis.14,16,17  However, some others studies agree with ours in regard to the lack of clinical significance of the immunophenotypic profiles in patients treated with immunochemotherapy.18  Several factors may account for these discrepancies, including the population studied and the methodology used. First, retrospective analysis of a heterogeneous series with different therapies may have confounded the results. However, the present study was an unbiased, population-based series, with patients homogenously treated with immunochemotherapy. On the other hand, we have included both nodal and extranodal DLBCLs. The main clinical features, including IPI scores, seem to be very similar to other publications.17  Secondly, technical shortcomings and interobserver discrepancies in the interpretations of the immunostaining slides most likely have an important role in the divergent data. The liability of immunohistochemistry has been pointed out in several studies, including the Lunenburg Lymphoma Biomarker Consortium study, which was an important step forward in standardizing the immunohistochemical studies of these lymphomas.26  In our study, we followed the Lunenburg indications to evaluate the antigens described in the consortium. However, some of the antigens used to build up the algorithms are relatively new and the evaluation criteria have not been thoroughly investigated. Therefore, we cannot rule out the possibility that differences in the evaluation of the immunostaining with the newer markers could be part of the discrepancy compared with more recently described algorithms. The low-positive values of markers considered absolutely typical of GCB (ie, GCET1 and LMO2) were positive in 64% and 67% of the cases, respectively, and for the ABC subtype (ie, FOXP1) were positive in 50% of the cases (Table 5). However, we also observed discrepant results using the more established algorithms, suggesting that the reasons for the discordance may not be merely attributable to interpretative differences. We believe that one of the most important difficulties in immunohistochemical attempts to reproduce GEP results is the limitation of capturing information obtained from complex gene-expression signatures on a large number of genes using a very small number of antigens. Therefore, to reliably reproduce GEP information and to transfer it to the clinical practice, new technologies, probably different from standard immunohistochemistry, are warranted.

In summary, in the present study, none of the 5 immunohistochemical algorithms was able to accurately predict the GEP subtype or to separate molecular groups with prognostic value. As a consequence, stratification based on immunohistochemical algorithms for guiding therapy should be viewed very cautiously, even in clinical trials.

The online version of this article contains a data supplement.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 USC section 1734.

Acknowledgments

This study was supported by grants from the Ministry of Education and Science of Spain (SAF 2008 03630-O to E.C. and FIS PI 070409 to A.L.G.) and from the Red Temática de Investigación Cooperativa en Cáncer (RTICC U.2006-RET2039-O to E.C.)

A complete list of GELCAB members appears in the online supplemental Appendix.

Authorship

Contribution: G.G.-G., T.C.-S., E.C., L.C., and A.L.-G. designed and performed research, analyzed data, and wrote the paper; F.C., J.L.M., S.S., S.M., A.V., A.M., P.J., M.P., and A.G.-H. analyzed data; E.G.-B., S.M., J.M.S., L.A., L.E., A.M.-T., and E.G. performed research; and N.V. analyzed data and wrote the paper.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Dr A. López-Guillermo, MD, Department of Hematology, Hospital Clínic, Villarroel 170, 08036 Barcelona, Spain; e-mail: alopezg@clinic.ub.es.

References

References
1
Swerdlow
 
SH
Campo
 
E
Harris
 
NL
, et al. 
WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues
2008
Geneva
World Health Organization
2
Alizadeh
 
AA
Eisen
 
MB
Davis
 
RE
, et al. 
Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling.
Nature
2000
, vol. 
403
 
6769
(pg. 
503
-
511
)
3
Coiffier
 
B
Lepage
 
E
Briere
 
J
, et al. 
CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma.
N Engl J Med
2002
, vol. 
346
 
4
(pg. 
235
-
242
)
4
Feugier
 
P
Van Hoof
 
A
Sebban
 
C
, et al. 
Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d'Etude des Lymphomes de l'Adulte.
J Clin Oncol
2005
, vol. 
23
 
18
(pg. 
4117
-
4126
)
5
Habermann
 
TM
Weller
 
EA
Morrison
 
VA
, et al. 
Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma.
J Clin Oncol
2006
, vol. 
24
 
19
(pg. 
3121
-
3127
)
6
Pfreundschuh
 
M
Trumper
 
L
Osterborg
 
A
, et al. 
CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group.
Lancet Oncol
2006
, vol. 
7
 
5
(pg. 
379
-
391
)
7
Pfreundschuh
 
M
Schubert
 
J
Ziepert
 
M
, et al. 
Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: a randomised controlled trial (RICOVER-60).
Lancet Oncol
2008
, vol. 
9
 
2
(pg. 
105
-
116
)
8
Sehn
 
LH
Donaldson
 
J
Chhanabhai
 
M
, et al. 
Introduction of combined CHOP plus rituximab therapy dramatically improved outcome of diffuse large B-cell lymphoma in British Columbia.
J Clin Oncol
2005
, vol. 
23
 
22
(pg. 
5027
-
5033
)
9
Hagberg
 
H
Gisselbrecht
 
C
Randomised phase III study of R-ICE versus R-DHAP in relapsed patients with CD20 diffuse large B-cell lymphoma (DLBCL) followed by high-dose therapy and a second randomisation to maintenance treatment with rituximab or not: an update of the CORAL study.
Ann Oncol
2006
17 suppl 4
(pg. 
iv31
-
32
)
10
Sehn
 
LH
Early detection of patients with poor risk diffuse large B-cell lymphoma.
Leuk Lymphoma
2009
, vol. 
50
 
11
(pg. 
1744
-
1747
)
11
Rosenwald
 
A
Wright
 
G
Chan
 
WC
, et al. 
The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma.
N Engl J Med
2002
, vol. 
346
 
25
(pg. 
1937
-
1947
)
12
Lenz
 
G
Wright
 
G
Dave
 
SS
, et al. 
Stromal gene signatures in large-B-cell lymphomas.
N Engl J Med
2008
, vol. 
359
 
22
(pg. 
2313
-
2323
)
13
Colomo
 
L
Lopez-Guillermo
 
A
Perales
 
M
, et al. 
Clinical impact of the differentiation profile assessed by immunophenotyping in patients with diffuse large B-cell lymphoma.
Blood
2003
, vol. 
101
 
1
(pg. 
78
-
84
)
14
Hans
 
CP
Weisenburger
 
DD
Greiner
 
TC
, et al. 
Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray.
Blood
2004
, vol. 
103
 
1
(pg. 
275
-
282
)
15
Muris
 
JJ
Meijer
 
CJ
Vos
 
W
, et al. 
Immunohistochemical profiling based on Bcl-2, CD10 and MUM1 expression improves risk stratification in patients with primary nodal diffuse large B cell lymphoma.
J Pathol
2006
, vol. 
208
 
5
(pg. 
714
-
723
)
16
Choi
 
WW
Weisenburger
 
DD
Greiner
 
TC
, et al. 
A new immunostain algorithm classifies diffuse large B-cell lymphoma into molecular subtypes with high accuracy.
Clin Cancer Res
2009
, vol. 
15
 
17
(pg. 
5494
-
5502
)
17
Meyer
 
PN
Fu
 
K
Greiner
 
TC
, et al. 
Immunohistochemical methods for predicting cell of origin and survival in patients with diffuse large B-cell lymphoma treated with rituximab.
J Clin Oncol
2011
, vol. 
29
 
2
(pg. 
200
-
207
)
18
Ott
 
G
Ziepert
 
M
Klapper
 
W
, et al. 
Immunoblastic morphology but not the immunohistochemical GCB/nonGCB classifier predicts outcome in diffuse large B-cell lymphoma in the RICOVER-60 trial of the DSHNHL.
Blood
2010
, vol. 
116
 
23
(pg. 
4916
-
4925
)
19
Berglund
 
M
Thunberg
 
U
Amini
 
RM
, et al. 
Evaluation of immunophenotype in diffuse large B-cell lymphoma and its impact on prognosis.
Mod Pathol
2005
, vol. 
18
 
8
(pg. 
1113
-
1120
)
20
Copie-Bergman
 
C
Gaulard
 
P
Leroy
 
K
, et al. 
Immuno-fluorescence in situ hybridization index predicts survival in patients with diffuse large B-cell lymphoma treated with R-CHOP: a GELA study.
J Clin Oncol
2009
, vol. 
27
 
33
(pg. 
5573
-
5579
)
21
Nyman
 
H
Adde
 
M
Karjalainen-Lindsberg
 
ML
, et al. 
Prognostic impact of immunohistochemically defined germinal center phenotype in diffuse large B-cell lymphoma patients treated with immunochemotherapy.
Blood
2007
, vol. 
109
 
11
(pg. 
4930
-
4935
)
22
Fu
 
K
Weisenburger
 
DD
Choi
 
WW
, et al. 
Addition of rituximab to standard chemotherapy improves the survival of both the germinal center B-cell-like and non-germinal center B-cell-like subtypes of diffuse large B-cell lymphoma.
J Clin Oncol
2008
, vol. 
26
 
28
(pg. 
4587
-
4594
)
23
De Paepe
 
P
Achten
 
R
Verhoef
 
G
, et al. 
Large cleaved and immunoblastic lymphoma may represent two distinct clinicopathologic entities within the group of diffuse large B-cell lymphomas.
J Clin Oncol
2005
, vol. 
23
 
28
(pg. 
7060
-
7068
)
24
de Jong
 
D
Rosenwald
 
A
Chhanabhai
 
M
, et al. 
Immunohistochemical prognostic markers in diffuse large B-cell lymphoma: validation of tissue microarray as a prerequisite for broad clinical applications–a study from the Lunenburg Lymphoma Biomarker Consortium.
J Clin Oncol
2007
, vol. 
25
 
7
(pg. 
805
-
812
)
25
Cheson
 
BD
New response criteria for lymphomas in clinical trials.
Ann Oncol
2008
, vol. 
19
 
suppl 4
(pg. 
iv35
-
38
)
26
de Jong
 
D
Xie
 
W
Rosenwald
 
A
, et al. 
Immunohistochemical prognostic markers in diffuse large B-cell lymphoma: validation of tissue microarray as a prerequisite for broad clinical applications (a study from the Lunenburg Lymphoma Biomarker Consortium).
J Clin Pathol
2009
, vol. 
62
 
2
(pg. 
128
-
138
)
27
Barrans
 
SL
Fenton
 
JA
Banham
 
A
Owen
 
RG
Jack
 
AS
Strong expression of FOXP1 identifies a distinct subset of diffuse large B-cell lymphoma (DLBCL) patients with poor outcome.
Blood
2004
, vol. 
104
 
9
(pg. 
2933
-
2935
)
28
Montes-Moreno
 
S
Roncador
 
G
Maestre
 
L
, et al. 
Gcet1 (centerin), a highly restricted marker for a subset of germinal center-derived lymphomas.
Blood
2008
, vol. 
111
 
1
(pg. 
351
-
358
)
29
Natkunam
 
Y
Lossos
 
IS
Taidi
 
B
, et al. 
Expression of the human germinal center-associated lymphoma (HGAL) protein, a new marker of germinal center B-cell derivation.
Blood
2005
, vol. 
105
 
10
(pg. 
3979
-
3986
)
30
Martinez
 
A
Pittaluga
 
S
Rudelius
 
M
, et al. 
Expression of the interferon regulatory factor 8/ICSBP-1 in human reactive lymphoid tissues and B-cell lymphomas: a novel germinal center marker.
Am J Surg Pathol
2008
, vol. 
32
 
8
(pg. 
1190
-
1200
)
31
Balague
 
O
Mozos
 
A
Martinez
 
D
, et al. 
Activation of the endoplasmic reticulum stress-associated transcription factor x box-binding protein-1 occurs in a subset of normal germinal-center B cells and in aggressive B-cell lymphomas with prognostic implications.
Am J Pathol
2009
, vol. 
174
 
6
(pg. 
2337
-
2346
)
32
Cattoretti
 
G
Angelin-Duclos
 
C
Shaknovich
 
R
Zhou
 
H
Wang
 
D
Alobeid
 
B
PRDM1/Blimp-1 is expressed in human B-lymphocytes committed to the plasma cell lineage.
J Pathol
2005
, vol. 
206
 
1
(pg. 
76
-
86
)
33
Wright
 
G
Tan
 
B
Rosenwald
 
A
Hurt
 
EH
Wiestner
 
A
Staudt
 
LM
A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma.
Proc Natl Acad Sci U S A
2003
, vol. 
100
 
17
(pg. 
9991
-
9996
)
34
Kaplan
 
EL
Meier
 
P
Nonparametric estimation from incomplete observations.
J Am Stat Assoc
1958
, vol. 
53
 
282
(pg. 
457
-
481
)
35
Peto
 
R
Pike
 
MC
Conservatism of the approximation sigma (O-E)2-E in the logrank test for survival data or tumor incidence data.
Biometrics
1973
, vol. 
29
 
3
(pg. 
579
-
584
)
36
Cox
 
DR
Regression models and life tables.
J R Stat Assoc
1972
, vol. 
34
 (pg. 
187
-
220
)
37
Dunleavy
 
K
Pittaluga
 
S
Czuczman
 
MS
, et al. 
Differential efficacy of bortezomib plus chemotherapy within molecular subtypes of diffuse large B-cell lymphoma.
Blood
2009
, vol. 
113
 
24
(pg. 
6069
-
6076
)
38
Wilson
 
WH
Dunleavy
 
K
Pittaluga
 
S
, et al. 
Phase II study of dose-adjusted EPOCH and rituximab in untreated diffuse large B-cell lymphoma with analysis of germinal center and post-germinal center biomarkers.
J Clin Oncol
2008
, vol. 
26
 
16
(pg. 
2717
-
2724
)
39
Wilson
 
WH
Hernandez-Ilizaliturri
 
FJ
Dunleavy
 
K
Little
 
RF
O'Connor
 
OA
Novel disease targets and management approaches for diffuse large B-cell lymphoma.
Leuk Lymphoma
2010
, vol. 
51
 
suppl 1
(pg. 
1
-
10
)

Author notes

*

G.G.-G. and T.C.-S. contributed equally to this study.