Abstract 3934

Background:

Mantle cell lymphoma (MCL) is a pre–germinal center neoplasm characterized by cyclin D1 overexpression resulting from translocation of the cyclin D1 gene on 11q13 to the promoter of the immunoglobulin heavy chain locus on 14q32. Since MCL is incurable with standard lymphoma therapies, new treatment approaches are needed that target specific biologic pathways. The bioactive polyphenol curcumin (Curc), derived from the rhizome of Curcuma longa Linn, has been shown to have pleiotropic activities related to its complex chemistry and its influence on multiple signaling pathways including NF-kB, Akt, Nrf2 and pathways involved in metastasis and angiogenesis. Curc has been shown to cause growth arrest and apoptosis of BKS-2 immature B-cell lymphoma by downregulating growth and survival promoting genes (Clin Immunol 1999; 93:152). However, because of poor aqueous solubility Curc has had limited clinical utility, so investigators have explored nanoparticle drug delivery approaches (J Nanobiotech 2007, 5:3, MCT 2010; 9:2255). We reasoned that effective and targeted drug delivery by nanoparticles required appropriate receptors to facilitate binding. We therefore screened lymphoma cell lines for receptors that recognize apolipoprotein (apo) A-1. We hypothesized that a novel discoidal nanoparticle (ND) consisting of apoA-1, phospholipid and Curc (Curc ND) would bind to such receptors to facilitate drug delivery.

Methods:

We compared biologic activity of free Curc vs. Curc-ND in MCL cell lines expressing receptors for apoA-1. Cell lines were grown and maintained in culture, treated, and apoptosis and cell cycle progression was measured by flow cytometry. Relevant signaling intermediates and presence of apoA-1 receptors were measured by immunoblotting using specific antibodies.

Results:

Granta and Jeko cells (both MCL cell lines) expressed apoA-1 receptors including class B scavenger receptor (SR-B1) and the ATP-binding cassette transporter of the sub-family G1 (ABCG1). To compare the pro-apoptotic effect of free Curc and Curc-ND, Granta cells were incubated with free Curc, Curc-ND, empty ND, and medium alone (untreated). Compared to medium alone, empty ND had no effect while free Curc (20 μM) induced apoptosis. Curc-ND produced a dose-dependent increase in apoptosis, with ∼70% apoptosis at 20 μM. To investigate the mechanism of Curc-ND induced apoptosis, apoptosis-related proteins were studied in cultured Granta cells. A time-dependent decrease in caspase-9 levels was observed following incubation with Curc-ND or free Curc. The decrease in caspase-9 seen with Curc-ND, however, occurs much earlier (between 2–4 h of incubation) than for free-Curc. Caspase-3 was undetectable after 16 h with either treatment. Loss of this band implies activation of caspase-3, which was confirmed by PARP cleavage, wherein a decrease in the 116 kD band was accompanied by an increase in the 85 kD cleavage product. Unlike free Curc, Curc-ND induced PARP cleavage even at 16 h of incubation, suggesting sustained drug release. Curc-ND downregulated cyclin D1, decreased Akt phosphorylation and enhanced cleavage of caspases-9 and -3, and PARP. In addition, Curc-ND induced G1 cell cycle arrest to a greater extent than free Curc in Granta and Jeko cells (Granta: Control 34% G1, Curc 37% G1, Curc-ND 46% G1; Jeko: Control 39% G1, Curc 49% G1, Curc-ND 54% G1).

Conclusion:

We have shown that the MCL cell lines Granta and Jeko express apoA-1 receptors, making them likely targets for discoidal nanoscale delivery vehicles stabilized with Apo-A1. These nanodisks, when carrying the polyphenol Curc, can result in increased caspase -dependent apoptosis, cell cycle arrest, downregulation of cyclin-D1 and decreased p-Akt. These data suggest that the pleiotropic polyphenol Curc has cell killing/arrest activity in MCL and that Curc-ND may be a potential therapeutic with drug targeting ability.

Disclosures:

Forte:Lypro Biosciences: Employment.

Author notes

*

Asterisk with author names denotes non-ASH members.