Abstract 4035

Poster Board III-971

Only a minority of cells, the leukemic stem cells (LSCs), within AML are responsible for tumor growth and maintenance. Many patients experience a relapse after therapy which is thought to originate from the outgrowth of therapy resistant LSC. Therefore, eradication of the LSCs is likely necessary to cure AML. Both the normal hematopoietic stem cells (HSCs) and LSCs co-exist in the bone marrow (BM) of leukemia patients and therefore success of an anti-stem-cell strategy relies on specific induction of LSC death while sparing the normal HSC. In AML, apart from the CD34+CD38- and the side population (SP) compartment, the high ALDH activity compartment contains the LSCs. The SP and ALDH defined compartments may include both CD34+ and CD34- HSCs and LSCs. ALDH is a detoxifying enzyme responsible for the oxidation of intracellular aldehydes and high ALDH activity results in resistance to alkylating agents such as the active derivatives of cyclophosphamide. Recent data has shown that ALDH is highly expressed in both normal progenitor and stem cells and in AML blast cells. In view of the applicability of LSC specific therapies the detoxification by ALDH might be of importance. Therefore, a difference in ALDH activity between the normal HSC and the malignant LSC might be used to preferentially kill the LSC and spare the HSC.

We have previously shown that CD34+CD38- and SP LSCs can be identified and discriminated from HSCs using stem cell-associated cell surface markers, including C-type lectin-like molecules (CLL-1), lineage markers, such as CD7, CD19, and CD56 and recently cell size characteristics as measured by flow cytometry (Terwijn, Blood 111: 487,2008). Here we have analyzed ALDH activity in 23 AML cases. In 7 AML cases, a high SSCloALDHbr cell population was identified (median: 10,9%, range 5,24-15,29%). In 16 cases there were rare (<5%) SSCloALDHbr cells.

We have analyzed ALDH activity in aberrant marker defined HSCs and LSCs, both present within the same BM samples in 18 AML patients (summarized in Figure 1). In 9 BM AML samples, defined as CD34-, the CD34+ compartment contained only normal CD34+CD38- HSCs. The ALDH activity in the CD34- cells, which includes by definition in this AML subgroup the LSC, is a factor 4,4 (range 1,7-18,9) lower than in the HSC (Figure 1, panel 1). The ALDHbrSSClo cells present in these CD34- AML cases contained both normal CD34+ and CD34- cells. The activity of the normal HSC within this AML BM is similar to that of the normal HSC in NBM of healthy donors (Figure 1, panel 3).

In addition, 9 BM AML patients, defined as CD34+ AML and with both marker negative, normal HSCs and marker positive LSCs present, were analyzed for ALDH activity. We show that the marker positive CD34+CD38- LSCs have 7,7 fold (range 1,73-29,2 fold) lower ALDH activity than the marker negative CD34+CD38- HSCs (Figure 1, panel 2). Altogether, we show that, although malignant AML blast cells have varying ALDH activity, a common feature of all AML cases is that the normal HSCs that co-exist with leukemic (stem) cells in the BM of AML patients have a higher ALDH activity as compared to their malignant counterparts (summarized in figure 1).

In conclusion, high ALDH activity is an unique marker of normal HSC within the AML BM (irrespective of AML phenotype, CD34+ or CD34-) at diagnosis. Consequently, AML patients with high ALDH activity in the normal HSC might benefit from treatment with alkylating agents such as cyclophosphamide, whereby the difference between the ALDH activity in LSC and HSC defines the therapeutic window. At present, drugs, known to be dependent on low ALDH for proper activity, are tested for their LSC specific killing while sparing the normal HSC. Additionally, transcriptional profiles are obtained from purified ALDH+ HSC and ALDH- LSC. This will enable us to use this general discriminating property to identify molecules that differ between the LSC and HSC and can function as LSC specific therapeutic targets.


No relevant conflicts of interest to declare.

Author notes


Asterisk with author names denotes non-ASH members.