Abstract

Abstract 3092

Poster Board III-29

Introduction

Early B cell acute lymphoblastic leukemia (B-ALL) is the most common type of childhood malignancy, characterized by abnormal accumulation and proliferation of progenitor-B or precursor-B (pre-B) cells. Current challenges associated with B-ALL treatment include fatal relapses, treatment-related toxicities and long-term morbidities underscoring a need to develop new targeted therapies aimed at eradicating leukemia cells and their stem cells. To achieve this, a better understanding of molecular mechanisms involved in leukemia initiation and progression is required. Our laboratory developed p53-/- PrkdcSCID/SCID double mutant (DM) strain as a mouse model of early B-ALL. We showed that DM leukemias progress through discrete developmental stages of leukemogenesis despite the absence of a pre-B cell receptor (pre-BCR), a crucial checkpoint in B cell development. Spleen tyrosine kinase (SYK), a key proximal component of pre-BCR signaling, was activated in the DM leukemias despite the absence of pre-BCR and was required for their survival. Approximately 70% of pediatric pre-B-ALLs also do not express pre-BCR, which lead us to investigate SYK signaling in human pre-B-ALL and to test potential therapeutic application of SYK inhibition in these leukemias.

Patients and Methods

We examined 22 viably frozen primary pediatric pre-B-ALL bone marrow samples to test their responses to SYK inhibition in vitro and in vivo and have investigated the molecular basis for aberrant SYK-mediated signaling in B-ALL.

Results

Western blot analyses revealed that SYK and BLNK, a dominant target of SYK, were expressed in pre-B-ALL patient samples. The majority of human pre-B ALL samples tested (14/22) displayed significantly attenuated proliferation in the presence of SYK inhibitors suggesting that SYK is necessary for their survival and/or proliferation. Treatment with SYK inhibitor R406 prevented phosphorylation of downstream SYK targets including BLNK and PLC-γ2. We are continuing to study the effects of SYK inhibition using phospho-flow cytometry and genome wide expression arrays. Preliminary data will also be presented on therapeutic efficacy of an orally bioavailable form of R406-mediated SYK inhibition in vivo by xenotransplantation of human leukemias into immuno-deficient mice.

Conclusions

Understanding the molecular mechanisms of pre-BCR-independent SYK activation involved in proliferation and survival of leukemic blasts may provide a rational basis for development of effective treatment for ALL. Specifically, targeted therapeutic inhibition of SYK signaling may be effective B-ALL treatment that may improve outcomes of current treatment regiments with minimal additional treatment-related toxicity.

Disclosures

Pine:Rigel Pharmaceuticals: Employment, Equity Ownership. Hitoshi:Rigel Pharmaceuticals: Employment, Equity Ownership.

Author notes

*

Asterisk with author names denotes non-ASH members.