Abstract 3057

Poster Board II-1033

Gas6 is the vitamin-K dependent protein product of growth arrest specific gene 6. A genetic deficiency of this protein protects mice against experimentally induced thrombosis without causing a bleeding diathesis. Protection from thrombosis results from a deficiency in platelet aggregation and secretion. In addition to being expressed by platelets, Gas6 and its receptors are also expressed by vascular cells including the endothelium, an organ known to play a role in the hemostatic balance. While endothelial Gas6 has been shown to promote inflammation and cell survival, it remains unknown if it contributes to the pathophysiology of venous thrombosis. To answer this question, we employed a bone marrow transplantation (BMT) strategy using wild type and Gas6 null mice to create chimeric mice with combined genotypes in the vascular and platelet compartments. Mice were exposed to a dose of radiation optimized to maximize both survival and ablation of recipient marrow. Irradiated mice were then infused with bone marrow cells isolated from the femurs and tibias of donor mice and were allowed a one month recovery period for hematologic reconstitution. Success of marrow uptake was confirmed by PCR. They were then subjected to the Ferric Chloride model of venous thrombosis in the Inferior Vena Cava (IVC). Four groups of transplanted mice were studied. Results from these BMT experiment show a contributing effect by both endothelial as well as platelet Gas6 to thrombus formation (n=8, p<0.01). Mice with combined genotypes (Gas6-/- into WT and WT into Gas6 -/-) show an intermediate thrombus weight suggesting that both vascular and platelet derived Gas6 are both responsible for thrombosis pathology. Therefore, Gas6 at both sites could be potential targets in treating venous thrombosis.


No relevant conflicts of interest to declare.

Author notes


Asterisk with author names denotes non-ASH members.