Abstract

Abstract 2848

Poster Board II-824

Background:

Multiple myeloma remains incurable with current therapies and novel approaches based on disease biology are needed. IL-6 is a critical cytokine involved in myeloma cell proliferation and survival and exerts its activity primarily through the JAK/STAT pathway. In addition to IL6, other cytokines are also believed to cross talk with the JAK/STAT pathway, making it a crucial interface for survival signals. It has been implicated in myeloma cell interaction with the microenvironment and resistance to apoptotic stimuli from different drugs, and represents a potential therapeutic target. We examined the pre-clinical activity of a novel JAK2 tyrosine kinase inhibitor TG101209.

Methods:

TG101209 (N-tert-butyl-3-(5-methyl-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-pyrimidin-4-ylamino)-benzenesulfonamide) was synthesized by TargeGen Inc. (San Diego, CA, USA). Stock solutions were made in DMSO, and subsequently diluted in RPMI-1640 medium for use. MM cell lines were cultured in RPMI 1640 containing 10% fetal bovine serum (20% serum for primary patient cells) supplemented with L-Glutamine, penicillin, and streptomycin. Cytotoxicity was measured using the MTT viability assay and proliferation using thymidine uptake. Apoptosis was measured using flow cytometry upon cell staining with Annexin V-FITC and propidium iodide (PI) for cell lines and using Apo2.7 in primary patient cells. CD45 expression was estimated using flow cytometry and cells were gated by their CD45 expression to assess differential effects of the drug. Immunoblotting was done on cell extracts at various time points following incubation with the drug in order to study the cell signaling pathways.

Results:

TG101209 resulted in a dose and time dependent inhibition of cell growth in the MM cell lines tested. Most of the cytotoxicity was evident by 48 hours, with minimal increase seen up to 96 hours of incubation. At 48 hours of incubation, the median inhibitory concentration was between 2 and 4uM with similar IC50 seen for myeloma cell lines sensitive or resistant to conventional therapies. The IC50s were maintained when the cells were treated in co-culture with stromal cells or in the presence of IL6, IGF or VEGF. Increasing doses of IL6 was not able to rescue the cells from the drug. Dose dependent decrease in proliferation of the cell lines was evidenced by decreased thymidine incorporation. Apoptotic changes in cells following drug treatment was confirmed by flow cytometry for Annexin and PI. Cleavage of caspases 3, 8 and 9 were confirmed on flow cytometry. Addition of the pan-caspase inhibitor zvad-fmk did not prevent drug-induced apoptosis confirming non-caspase mediated mechanisms of cell death as well. Primary myeloma cells from several patients were treated with increasing doses of the drug and IC50 similar to cell lines were seen in 8/10 patient samples tested. Interestingly, evaluation of U266 cell lines, which have a mix of CD45+ and negative cells as well as primary patient cells demonstrated more profound cytotoxicity and anti-proliferative activity of the drug on the CD45+ population relative to the CD45- cells. Immunoblotting studies demonstrated significant down regulation of IL-6 induced pSTAT3 with minor effects on the pERK and pAkt. The effect on pSAT3 was sustained compared to that on pERK and pAkt. This was accompanied by significant down regulation of Bcl-xL. Studies in a mouse model of myeloma are planned.

Conclusion:

These studies demonstrate significant in-vitro activity of JAK2 inhibition in multiple myeloma. In particular, the preferential targeting of CD45 cells, considered to reflect the proliferative compartment in myeloma holds out the promise for more sustained impact on the disease from a therapeutic standpoint. This is likely explained by the increased sensitivity of the CD45 cells to cytokines as a result of higher expression of different cytokine receptors as has been previously shown. This leads to increased activity of and dependence of the cells on the JAK-STAT pathway and likely explains the increased effect of the pathway inhibition. These studies form the framework for clinical evaluation of the drug in the setting of myeloma.

Disclosures:

Kumar:CELGENE: Research Funding; MILLENNIUM: Research Funding; BAYER: Research Funding; GENZYME: Research Funding; NOVARTIS: Research Funding.

Author notes

*

Asterisk with author names denotes non-ASH members.