Mixed Lineage Leukemia (MLL) mutations identify a unique group of acute leukemias with distinct biological and clinical features. Although the role of MLL in leukemogenesis has been extensively studied, a precise mechanism regarding the leukemogenic potential of MLL mutations is not known. We generated a switchable MLL-ENL-ERtm mouse model, in which the MLL-ENL oncogene has been introduced by homologous recombination and is controlled by the endogenous MLL promoter, thus, expressed at physiological levels. Due to fusion with the estrogen receptor ligand binding domain (ERtm), the MLL-ENL-ERtm protein activity is dependent on continuous provision of tamoxifen or 4-hydroxytamoxifen. The MLL-ENL-ERtm mice have developed a myeloproliferative disorder (MPD) characterized by persistent mature neutrophilia after 484,5 +/− 75,68 days of latency on a tamoxifen diet, in association with high white cell counts in peripheral blood, splenomegaly and occasionally with anemia. Blood smears showed large numbers of mature myeloid elements consisting of 40–80% neutrophils (non-segmented forms in abundance), admixed with immature myeloid elements, 3–11% monocytes and 2–6% myeloblasts. The phenotype of MPD also involved myelomonocytic proliferation with 35% immature monocytic cells in one animal and severe anemia with increased numbers of immature erythroid cells in peripheral blood in another animal. Hematoxylin- and eosin-stained sections of the bone marrow from MLL-ENL-ERtm mice revealed expansion of myeloid cell population with no signs of progressive dysplasia. We observed massive infiltration of myeloid cells (positive for myeloperoxidase) into spleen with various degree of loss of normal splenic architecture depending on disease progression. FACS profiles of both bone marrow and spleen cells showed a typical pattern of granulocyte/macrophage/monocyte surface marker expression (CD34-CD43+Mac- 1+Gr-1+CD16/32+). In vitro evaluation of hematopoetic progenitors derived from bone marrow of leukemic mice at the terminal stage of the disease revealed decreased numbers of BFU-Es and increased numbers of CFU-GMs and CFU-Gs compared to matched controls. These results correlated with the expansion of the myelomonocytic and reduction of the erythroid compartment observed in the bone marrow of these animals. The average size (cellularity) of the mutant myeloid colonies was much smaller than the colonies derived from the wild-type controls, which could be caused by a partial block of terminal differentiation of myeloid progenitors in vitro. In vivo, MLL-ENL leads to expansion of differentiated myeloid cells in our model. High penetrance and long latency of leukemia in our model permits the study of early leukemia development. Our model revealed that MLL-ENL - induced myeloproliferation occurs as early as twelve weeks after MLL-ENL-ERtm activation in the bone marrow and infiltrates the spleen with a consequent decrease in lymphoid B220+CD19+IgM+ cells. Using the TUNEL assay on bone marrow sections, we observed induction of apoptosis in the highly proliferative bone marrow compartment compared to matched controls. These results suggest activation of a potential tumor suppressor mechanism by MLL-ENL in early stages of leukemia. We are currently investigating potential tumor suppressor pathways that might be involved in MLL-ENL - induced apoptosis in preleukemia.

Disclosures: No relevant conflicts of interest to declare.

Supported by grants MSM6198959205 and NPV2B06077 from the Ministry of Education, Youth and Sports, Czech Republic.

Author notes

Corresponding author