In this study we demonstrate the suitability of the vertebrate Danio rerio (zebrafish) for functional screening of novel platelet genes in vivo by reverse genetics. Comparative transcript analysis of platelets and their precursor cell the megakaryocyte, together with nucleated blood cell elements, endothelial cells and erythroblasts, identified novel platelet membrane proteins with hitherto unknown role in thrombus formation. We determined the phenotype induced by antisense morpholino oligonucleotide (MO)-based knockdown of five of these genes in a laser-induced arterial thrombosis model. To validate the model, the genes for platelet Glycoprotein (GP) IIb and the coagulation protein Factor VIII were targeted. MO-injected fish showed normal thrombus initiation but severely impaired thrombus growth, consistent with the mouse knockout phenotypes, and concomitant knockdown of both resulted in spontaneous bleeding. Knockdown of four of the five novel platelet proteins altered arterial thrombosis, as demonstrated by modified kinetics of thrombus initiation and/or development. We identified a putative role for BAMBI and LRRC32 in promotion and DCBLD2 and ESAM in inhibition of thrombus formation. We conclude that phenotypic analysis of MO-injected zebrafish is a fast and powerful method for initial screening of novel platelet proteins for function in thrombosis.

Disclosures: No relevant conflicts of interest to declare.

Author notes

Corresponding author