Three NK-like (NKL) homeobox genes, TLX1/HOX11, TLX3/HOX11L2 and NKX2- 5/CSX, have been implicated in T-cell acute lymphoblastic leukemia (T-ALL). Here we screened further NKL genes in 24 T-ALL cell lines by RT-PCR and identified common expression of MSX2, highlighting this homeobox gene as a potential physiological family member in T-cells. Subsequent quantification of MSX2 confirmed expression in primary hematopoietic cells demonstrating higher levels in CD34+ stem cells when compared to peripheral blood cells or mature CD3+ T-cells. Analysis of core thymic factors in T-ALL cell lines, including IL7, BMP4, TGFbeta, NOTCH and T-cell receptor signaling, suggests their involvement in MSX2 regulation during T-cell differentiation. Chromosomal and genomic analysis of the MSX2 locus (at 5q35) uncovered deletion in t(5;14)(q35;q32) positive T-ALL cell lines associated with low expression levels of MSX2 and ectopic activation of TLX3 or NKX2-5, respectively. For functional analysis we lentivirally transduced T-ALL cells for overexpression of either MSX2 or oncogenic TLX1 and NKX2-5. These cells displayed transcriptional activation of NOTCH3-signaling, as indicated by expression array profiling and real-time PCR analysis of NOTCH3, HES1 and HEY1. The sensitivities to gamma-secretase inhibitor analyzed by MTT-assay of cells overexpressing MSX2, TLX1 or NKX2-5, respectively, were consistently decreased. Furthermore, in addition to MSX2, both TLX1 and NKX2-5 proteins interacted with repressor proteins of the NOTCH-pathway, SPEN/MINT and TLE1/GRG1, as shown by co-immunoprecipitation, probably representing one mechanism of (de)regulation. Elevated expression of NOTCH3 and HEY1 mRNA was detected in TLX1/3 positive T-ALL patients, confirming data obtained from cell lines. In conclusion, we have defined expression patterns, regulation and targets of MSX2 in hematopoietic cells, to reveal a novel modulatory activity in T-cell differentiation operating via NOTCH-signaling, and in leukemogenesis when replaced or supplemented by oncogenic NKL homeodomain proteins.

Disclosures: No relevant conflicts of interest to declare.

Author notes

Corresponding author