Abstract

The FoxO family of transcription factors is regulated by PI3K/Akt induced phosphorylation resulting in nuclear exclusion and degradation. Nuclear FoxO transcribes proapoptotic molecules and cell cycle inhibitors. In CML cells the TK activity of Bcr-Abl leads to the abnormal activation of downstream effectors including PI3K/Akt. The aim of this study was to investigate the role of FoxO3 in Bcr-Abl induced apoptotic arrest and cell growth and the effect of imatinib (IM) induced re-activation of FoxO3 activity in CML progenitor cells. BM cells were collected from 52 CML patients and 20 healthy donors. The expression level of FoxO3 was tested by RQ-PCR. The protein amount and localization was analyzed by Western blot and immunofluorescence, DNA binding activity was measured by EMSA. In addition, FoxO3 was analyzed in CML primary cells and CD34+ cells after IM incubation. Cell cycle and the expression levels of CD47, which has been demonstrated to increased during progression through the cell cycle and stem cell mobilization, was measured by FACS in CD34+ cell population. In addition K562 cells was transfected with pECE-FoxO3 to clarify FoxO3 effects on cell growth and apoptosis. Finally we used our already set up model of Drosophila melanogaster (Dm) transgenic for human Bcr-Abl to study the pathway leading to FoxO3 inactivation. We found that, despite either FoxO3 mRNA levels or protein amount are similar in CML cells compared to controls, FoxO3 protein is equally distributed in the nucleus and cytoplasm in controls but it is completely cytoplasmatic in CML cells and it enters the nucleus during in vivo IM treatment or in vitro IM incubation. Additionally, FoxO3 DNA binding activity in CML patients is completely absent at diagnosis and reappears after IM treatment. Moreover FoxO3 overexpression in transfected cells results into a 49±9 % reduction of proliferation which was further reduced of 75±5 % after IM incubation. Furthermore, we demonstrated that IM incubation results into the reactivation of FoxO3 in Ph+ CD34+ cells inducing quiescence into this population as demonstrated by the comparison of cell cycle kinetics and by a decreased expression of CD47. Finally, the progeny obtained from the crossbreeding of Bcr-Abl flies and flies transgenic for FoxO showed a rescue of FoxO phenotype demonstrating that FoxO inactivation is Bcr-Abl mediated. Overall, these in vitro and in vivo experiments suggest that FoxO3 is inactivated in CML cells and its delocalization is mainly dependant from Bcr-Abl activity. The antiproliferative activity of IM may be mediated by FoxO3 re-localization. On the other side, FoxO3 re-activation induced by IM results into a quiescence of Bcr-Abl CD34+ progenitor cells, which raises a hypothesis that FoxO3 could play a role in IM resistance. This investigation was conducted by CML Correlative Studies Network (CCSN), TOPS, which is sponsored by Novartis Oncology

Disclosures: Kalebic:Novartis: Employment. Martinelli:Novartis, Brystol Myers Squibb: Honoraria; Novartis: Research Funding. Saglio:Novartis, Brystol Myers Squibb: Honoraria; Novartis: Research Funding.

Author notes

Corresponding author