Abstract

Novel immunochemotherapy regimens combined with imatinib mesylate (IA) have significantly improved treatment outcome of Ph+ ALL. Nevertheless, most adult patients with Ph+ ALL relapse and succumb to their disease. Recent reports suggested that Jak-2 is engaged in the signaling of Bcr-Abl in chronic myelogenous leukemia (CML) cells. Because Jak-2 inhibitory agents are currently investigated in clinical trials, we sought to explore the role of Jak-2 in the signaling of Bcr-Abl in Ph+ ALL assuming that inhibition of Jak-2 might be beneficial in the treatment of Ph+ ALL. To do this, we used our Ph+ (p190) ALL cell lines Z-119 and Z-181 (

Estrov et al.
J Cell Physiol
166
:
618
,
1996
). We chose these cells because in both lines Jak-2 can be activated. Both Z-119 and Z-181 cells express granulocyte-macrophage colony-stimulating factor (GM-CSF) receptors and GM-CSF activates Jak-2 and stimulates the proliferation of both cell lines. Using a clonogenic assay, we found that IA inhibited the proliferation of these cells at concentrations ranging from 50 to 500 nM. Because Bcr-Abl was found to activate the signal transducer and activator of transcription (STAT)-5 in CML cells, we used Western immunoblotting and found that IA inhibited the phosphorylation (p) of STAT5 in a dose-dependent manner in Ph+ ALL cells. To test whether JAk-2 plays a role in Bcr-Abl (p190) signaling we incubated Z-181 cells for 4 hours with or without 50, 100, 250, and 500 nM IA, extracted cellular protein and immunoprecipitated total STAT5 protein. Then, using Western immunoblotting we detected the Bcr-Abl p190 protein in all STAT5 immunoprecipitates and by using specific pSTAT5 antibodies, we demonstrated that IA induced a dose-dependent reduction in the levels of pSTAT5, but not of p190 protein, suggesting that the p190 Bcr-Abl kinase binds to and activates STAT5. Remarkably, neither Jak-2 nor pJak-2 was detected in either immunoprecipitate. To further delineate the role of Jak-2 in Bcr-Abl signaling we extracted protein from Z-181 cells and immunoprecipitated Jak-2. Neither Bcr-Abl nor STAT5 was detected in these immunoprecipitates, confirming that Jak-2 does not bind Bcr-Abl p190 protein and does not participate in the activation of STAT5. Taken together, our data suggest that Bcr-Abl (p190) binds and phosphorylates STAT5 whereas, Jak-2 is not engaged in Bcr-Abl (p190) signaling in Ph+ ALL cells.

Author notes

Disclosure: No relevant conflicts of interest to declare.