Abstract

The search for novel therapeutic candidates causing reactivation of fetal hemoglobin (a2g2; HbF) to reduce the imbalance of globin gene expression is important in order to develop effective approach for the clinical management of sickle cell anemia and b-thalassemia. For the first time, we have identified cucurbitacin D (CuD), a naturally occurring oxygenated tetracyclic triterpenoid, as a molecular entity inducing g-globin gene expression and HbF synthesis in K562 cells and human erythroid progenitors from either peripheral blood or bone marrow. The upregulation of HbF induced by CuD was dose- and time- dependent. CuD was compared to hydroxyurea (HU), 5-azacytidine, amifostine, recombinant human erythropoietin (rhEPO), and sodium phenylbutyrate. At their optimal dosage, CuD (12.5 ng/mL) and HU (25.0 μg/mL) induced nearly 70% K562 cells to express total hemoglobin after 6 days culture, which was higher than the induction by Amifostine (30%), 5-azacytidine (36%), rhEPO (16%), sodium phenylbutyrate (23%) at their optimal concentrations and negative control (11%). Fetal hemoglobin ELISA showed that CuD (12.5 ng/mL) and 5-azacytidine (400 ng/mL) induced higher levels of fetal hemoglobin in K562 cells (15.4 ng/μL and 29.3 ng/μL, respectively), compared to HU (10.3 ng/μL), amifostine (7.8 ng/μL), rhEPO (10.9 ng/μL), sodium phenylbutyrate (9.9 ng/μL) at their optimal concentrations and negative control (5.3 ng/μL). CuD induced a significantly higher fetal cell percentage than HU in K562 cells (65% vs 37% maximum) and primary erythroid progenitors (36% vs 21% maximum) based on the immunofluorescence imaging and flow cytometry analysis. Real-time PCR results showed that the amount of γ-globin mRNA increased from 2.5-fold in CuD-optimal-treated cells (12.5 ng/mL, 48 hours) compared with 1.5-fold in HU-optimal-treated cells (25.0 μg/mL, 48 hours). Growth inhibition assay (MTT) demonstrated that CuD at its optimal γ-globin inducing dosage (12.5 ng/mL) inhibited proliferation of K562 by less than 10% of untreated control cells; while hydroxyurea at its optimal dosage (25.0 μg/mL) inhibited 80% of cell division. The in vitro therapeutic index (calculated by dividing the dose inhibiting 50% cell growth (IC50) by dose inducing 50% maximal HbF production (ED50)) of CuD was 40-fold greater than HU. Taken together, the results suggest that CuD has the potential to be a therapeutic agent for treatment of sickle cell anemia and b-thalassemia.

Author notes

Disclosure: No relevant conflicts of interest to declare.