Abstract

Angiopoietin-like (ANGPTL) molecules are a family of secreted proteins which have characteristic structures of angiopoietins. This includes a signal peptide, an extended helical domain predicted to form dimeric or trimeric coiled-coils (CC), a short linker peptide, and a globular fibrinogen-like domain (FLD). Zhang et. al. (

Nat. Med.
,
12
(2):
240
–245,
2006
) reported that human ANGPTL-2, 3, 3CC, 5 and 7, but not ANGPTL4, enhanced ex-vivo expansion of highly enriched mouse bone marrow (BM) long term competitive repopulating hematopoietic stem cells in serum-free culture with SCF, TPO, IGF-2, and FGF-1. To the present, there have not been publications describing effects of human ANGPTL molecules on hematopoietic progenitor cells (HPC) or on human hematopoietic cells. Thus, we evaluated purified recombinant human ANGPTL-2CC, 3, 3CC, 3FLD, 4, 4CC, 5, 6 and 7 (AdipoGen, Inc, Seoul, Korea) for effects on proliferation and survival of HPC from human cord blood (CB). No endotoxin was detected in the ANGPTL molecule preparations (<0.1 EU/ug endotoxin per LAL method). None of the ANGPTL molecules at up to 500ng/ml stimulated HPC colony formation by themselves, or enhanced or inhibited HPC colony formation of low density (LD) or CD34+ human cord blood (CB) cells stimulated by GM-CSF, GM-CSF plus SCF, Epo plus SCF, or the combination of Epo, SCF, IL-3 and GM-CSF. However, ANGPTL-2CC, 3, and 3CC at 200 and 100, but not 10ng/ml significantly enhanced the survival of human LD and CD34+ HPC (CFU-GM, BFU-E, CFU-GEMM) subjected to delayed addition of growth factors (Epo, SCF, IL-3, GM-CSF). Survival is a measure of anti-apoptosis for the hematopoietic progenitor cells in this context. The other ANGPTL molecules were not active at up to 500ng/ml. The survival enhancing effects of ANGPTL-3 was neutralized by purified rabbit anti-ANGPTL-3 IgG, but not by anti-ANGPTL-4, -6, or -7. Replating of HPC colonies offers an estimate of the self-renewal capabilities of HPC. We found that ANGPTL-3, but not -4, -6, or -7 enhanced the replating capacity of single CFU-GEMM colonies by greater than 2 fold. Thus far, we have not detected significant effects of the ANGPTL molecules on ex-vivo expansion of human CB CD34+ cells, alone, or in combination with SCF, TPO, Flt3-ligand, with or without IL-3, after assessing output of HPC, % and numbers of CD34+ cells, or cell cycle status of produced cells. In summary, we have implicated a few members of the ANGPTL family of proteins in functional effects on human HPC survival and replating/”self-renewal” activity, effects requiring the CC domain of the ANGPTL molecules. This information may be of relevance to regulation of HPC, and of use for protocols to use these cells for transplantation.

Author notes

Disclosure:Employment: Hal Broxmeyer consulted for AdipoGen, Inc., which supplied the angiopoietin-like molecules used for this study. Byung Youn is the CEO/President of AdipoGen, Inc., which supplied the angiopoietin-like molecules for testing. Consultancy: Hal Broxmeyer acted as a consultant for AdipoGen, Inc. Ownership Interests: Byung Youn has ownership in AdipoGen, Inc. Honoraria Information: Hal Broxmeyer received honorariums for his consultancy for AdipoGen, Inc.