Abstract

Chronic myelogenous leukaemia (CML) results from the neoplastic transformation of hematopoietic stem cells (HSC) and is characterized by a chromosomal translocation t(9;22)(q34;q11). This aberration leads to the expression of the oncogenic tyrosine kinase BCR-ABL, which mediates signals for proliferation, transformation and anti-apoptosis via various signalling pathways. Grb10, a member of the growth factor bound proteins, is known to bind activated tyrosine kinases like BCR-ABL and might be involved in the activation of the Akt signalling pathway. Here we report the impact of Grb10 for BCR-ABL mediated transformation. We exerted a siRNA based approach in combination with a murine bone marrow transplantation model. To this end we designed a MSCV based retrovirus encoding both a Grb10 microRNA and the BCR-ABL oncogene on a single construct. This approach ensured knockdowns of more than 90% in every BCR-ABL transformed cell. Methylcellulose assays demonstrated that bone marrow coexpressing Grb10 microRNA and BCR-ABL had a 4-fold decreased colony forming ability compared to control cells. We then transduced bone marrow (BM) with retrovirus coexpressing Grb10 microRNA and p185 BCR-ABL and transplanted lethally irradiated recipient Balb/C mice. The onset and progression of leukaemia was significantly delayed in mice transplanted with Grb10 microRNA and BCR-ABL compared with the BCR-ABL transduced control microRNA group. However, we were not able to completely avoid the development of leukaemia by Grb10 knockdown. Mice transplanted with the Grb10 knockdown construct showed a delayed lymphoblastic disease, positive for B220, whereas the control group developed a rapid myeloproliferative disease, characterized by CD11b and Gr-1. In vitro analysis of BaF/3 and 32D cells showed that Grb10 knockdown in combination with BCR-ABL expression leads to a reduced phosphorylation of Akt. Taken together our data demonstrate that Grb10 is required for the development of a myeloproliferative disease by BCR-ABL in mice. Hereby, Grb10 seems to be critical for the BCR-ABL induced activation of the Akt pathway. In addition, this study describes a novel approach to express an oncogene and a microRNA using a single retroviral construct. This tool can be used to systematically screen for drugable signalling targets involved in oncogenesis.

Author notes

Disclosure: No relevant conflicts of interest to declare.