Abstract

The Sleeping Beauty (SB) transposon system is a non-viral DNA delivery system in which a transposase directs integration of an SB transposon into TA-dinucleotide sites in the genome. To determine whether the SB transposon system can mediate integration and long-term transgene expression in human primary T-cells, freshly isolated peripheral blood lymphocytes (PBLs) without prior activation were nucleofected with SB vectors carrying a DsRed reporter gene. Plasmids containing the SB transposase on the same (cis) (n=10) or separate molecule (trans) (n=8) as the SB transposon mediated long-term and stable reporter gene expression in human primary T-cells. We observed that delivery of SB transposase-encoding plasmid in trans effectively mediated stable gene expression in primary T-cells, exhibiting about a 3-fold increase (11% vs. 3% with 10 microgram plasmid on day 21) in potency in comparison with the cis vector (p<0.0001). In addition, a transposase mutant construct was incapable of mediating stable gene expression in human PBLs (n=6, p<0.0001), confirming that catalytic DDE domain is necessary for transposition in human primary T-cells. Immunophenotyping analysis in transposed T-cells showed that both CD4 and CD8 T-cells were transgene positive. SB-mediated high level of transgene expression in human T-cells was maintained in culture for at least 4 months without losing observable expression. Southern hybridization analysis showed a variety of transposon integrants among the 6 DsRed positive T-cell clones and no transposon sequences identifiable in the 2 DsRed negative clones. Sequencing of transposon:chromosome junctions in 5 out of 6 transposed T-cell clones confirmed that stable gene expression was due to SB-mediated transposition. In other studies, PBLs were successfully transfected using the SB transposon system and shown to stably and functionally express a fusion protein consisting of

  • a surface receptor useful for positive T-cell selection and

  • a “suicide” gene useful for elimination of transfected T-cells after chemotherapy.

This study is the first report demonstrating that the SB transposon system can mediate stable gene transfer in human primary PBLs, which may be more advantageous for T-cell based gene therapies over widely used virus-based or conventional mammalian DNA vectors in terms of simplicity, stability, efficiency and safety.

Author notes

Corresponding author