Acute promyelocytic leukemia (APL) cells are blocked at the promyelocyte stage of myeloid differentiation. The majority of APL cells display the t(15;17) reciprocal chromosomal translocation leading to the expression of the fusion protein promyelocytic leukemia-retinoic acid receptor alpha (PML-RARa). Cells harboring this reciprocal translocation can be induced to differentiate after treatment with all-trans retinoic acid (at-RA) both in vivo and in vitro. During normal hematopoiesis, differentiation is regulated by several key transcription factors. One of them, CCAAT/enhancer binding protein alpha (C/EBPa), controls expression of genes regulating normal myeloid differentiation. Its disruption leads to a block of granulocytic differentiation. We thus hypothesize that C/EBPa could be deregulated in APL and therefore participate in the pathogenesis of APL. Using the U937PR9 cell line, which expresses an inducible PML-RARa, we observed that expression of PML-RARa induced a decrease of both C/EBPa mRNA and protein, leading to decreased C/EBPa DNA binding activity. Using a transient transfection assay with a C/EBPa promoter construct in presence or absence of PML-RARa, we are able to demonstrate that PML-RARa can repress C/EBPa promoter activity. This repression is specific to the fusion protein, as both PML and RARa have no effect upon the C/EBPa promoter. A computer search of the C/EBPa promoter sequence did not exhibit any evident RARE binding site, and therefore we are currently mapping the site(s) responsible for this repression. In conclusion, PML-RARa down regulates C/EBPa expression; this down regulation could participate in the pathogenesis of APL. This hypothesis is also supported by the observation that at-RA treatment of APL cell lines (NB4 and HT93) induces a rapid restoration of both C/EBPa RNA and protein. Thus, a decrease in both C/EBPa expression and activity could contribute to the differentiation block of APL cells by deregulating the normal myeloid differentiation program.

Author notes

Corresponding author

Sign in via your Institution