Abstract

Early diagnosis of Fanconi Anemia (FA) in patients with bone marrow failure is critical for optimal clinical management. However, the remarkably high clinical variability and the potential emergence of revertant hematopoietic cells (somatic mosaicism) can obscure and delay the diagnosis of FA. Here we addressed FA diagnosis in a prospective series of adult and pediatric patients who presented with bone marrow failure without clear overall clinical picture of FA.

Sixty-six patients were classified into three groups: (1) bone marrow failure likely to be congenital, based on dysmorphic features or a family history [n=18], (2) aplastic anemia likely to be idiopathic [n=32], (3) patients with intermediate clinical features not classified into the former groups [n=16]. Of note, FA patients with typical clinical features were not included in the present study. FA diagnosis was evaluated using chromosome breakage test and FANCD2 immunoblot in PHA-stimulated-PBL. In addition, skin primary fibroblasts were analysed in order to overcome potential hematopoietic FA reversion. For that purpose, and considering that chromosome breakage tests are barely efficient in fibroblasts, we used FANCD2 immunoblot and also developped a new flow cytometry test based on MMC-sensitivity in fibroblasts (to detect downstream FA/BRCA groups). Using these approaches, we detected FA in 4 previously undiagnosed patients: a 35-years old patient from the congenital-like group; a 10-years old patient presenting as an idiopathic aplastic anemia without any FA signs; and two patients from the intermediate group: a 10-years old patient with an isolated thrombocytopenia, and a 50-years old patient presenting with pancytopenia/MDS and complete hematopoietic reversion. Importantly, FA diagnosis was definitely excluded in all other patients. In conclusion, we could identify a few unexpected FA cases in a series of patients with bone marrow failure. Therefore, the comprehensive use of a large set of tests is useful for accurate FA diagnosis. Classical chromosomal breakage tests in PBL appeared to be sufficient to exclude FA in idiopathic aplastic anemia, whereas fibroblast analysis can be necessary to definitely diagnose or exclude FA in other patients.

Author notes

Corresponding author