Abstract

Extracorporeal photopheresis (ECP) is approved for the palliative treatment of skin manifestations associated with cutaneous T cell lymphoma. As reported in the literature, ECP has shown promise as a treatment for such immune-mediated inflammatory disorders as graft versus host disease, transplantation rejection, and autoimmune diseases. ECP involves the reinfusion of autologous, apoptotic peripheral blood leukocytes treated ex vivo with 8-methoxypsoralen (8-MOP) and UVA light. The biological mechanism of action of ECP, however, remains unresolved. We have evidence to suggest that delivery of ECP-treated apoptotic cells modulates immune responses, possibly through generation of regulatory T cells. When co-incubated with ECP-treated cells, activated dendritic cells produce reduced levels of proinflammatory cytokines, such as IL-12, while TGFβ levels were modestly increased. Activation of CD4+ T cells in the presence of allogeneic dendritic cells and ECP-treated cells promotes generation of a population of T cells that can suppress proliferation of, and IFNγ production by, naïve syngeneic T cells. To confirm these findings in vivo, we employed a murine contact hypersensitivity model. ECP-treated or control spleen and lymph node cells from mice sensitized with the hapten dinitrofluorobenzene (DNFB) were injected intravenously into naïve recipients. Compared to controls, mice that received ECP-treated cells demonstrated significantly less ear swelling following sensitization and challenge with DNFB. Suppression of ear swelling was specific for DNFB and cell-mediated, as demonstrated by the ability to transfer DNFB tolerance to naïve mice, which could appropriately respond to the unrelated hapten oxazalone. Transfer of this tolerance was abrogated by depletion of either CD4+ or CD25+ T cell populations. Collectively, these results suggest that delivery of ECP-treated cells promotes the generation of regulatory T cells that are capable of modulating immune responses. Therakos sponsored Phase II trials for the prevention and treatment of GvHD are concluding and an international blinded pivotal phase III study is planned for 2005.

Author notes

Corresponding author