Blood coagulation Factor VIII (FVIII) is secreted as a heterodimer consisting of a heavy and light chain. Both in vitro and in vivo studies have demonstrated that these chains can be expressed independently. The expressed heavy and light chains can reassociate with recovery of biological activities. These observations have been particularly useful in a gene therapy setting since vector packaging capacity for adeno-associated virus (AAV) is a limiting factor. However, it has been demonstrated that the FVIII heavy chain is expressed ~10–100-fold less efficiently compared to the light chain when expressed independently. Previously the FVIII F309S mutation in the context of B-domainless FVIII (FVIII-BDD) and enhanced glycosylations within the B-domain have been shown to improve factor VIII expression and secretion. However, our in vitro studies indicate that these improvements in secretion were not retained when expressing the heavy chain alone with the same modifications. Other sequences, possibly in the light chain, may facilitate secretion. To investigate this further, we designed an intein trans-splicing strategy to control the addition of light chain to the heavy chain before secretion. Using HEK293 cells, we cotransfected seperate intein light chain and intein heavy chain plasmids and compared results to single plasmid transfected cells. 48 hours post-transfection, FVIII-specific ELISA results demonstrated that cotransfection of intein heavy chain and intein light chain had a significant influence on total heavy chain secretion compared to intein heavy chain expression alone. The co-transfected intein heavy chain and intein light chain were efficiently ligated together yielding a biologically active single chain FVIII derivative as demonstrated by clotting assays and Western blot analysis. Therefore, heavy chain secretion was directly enhanced by the attachment of the light chain to the C-terminus of the heavy chain. A similar phenomenon was not found when heavy and light chains were simply co-expressed in the same cell. It suggested that light chain functioned in cis. Hydrodynamic injection of plasmids with intein heavy chain and intein light chain into hemophilia A mice led to a much higher level of FVIII secretion. The amount of functional FVIII expression reached 3–6 units/ml at peak level. In the absence of intein light chain, FVIII heavy chain secretion was approximately 100 fold less efficient in vivo. To map the key elements of FVIII light in helping FVIII secretion, we made deletion variants in the light chain. These mutants had a dominant negative effect in reducing FVIII and FVIII heavy chain secretion while increasing the level of intracellular FVIII accumulation. Collectively our results are consistent with the conclusion that the FVIII light chain plays a critical role in facilitating heavy chain secretion in cis; probably through helping FVIII heavy chain maintain correct configuration and folding. The strategy to manipulate FVIII light chain addition through intein mediated trans-splicing reaction may also be explored for human gene therapy.

Disclosure: No relevant conflicts of interest to declare.

Author notes


Corresponding author