Interleukin-10 (IL-10) is a potent monocyte regulatory cytokine that inhibits gene expression of proinflammatory mediators. In this study, we investigated the mechanism by which IL-10 downregulates expression of intercellular adhesion molecule-1 (ICAM-1) on the cell surface of normal human monocytes activated with interferon-γ (IFN-γ). IL-10 inhibition of IFN-γ-induced ICAM-1 expression was apparent as early as 3 hours and was blocked by an anti–IL-10 antibody but not by an isotype-matched control antibody. Northern blot analysis showed that IL-10 reduced the accumulation of ICAM-1 mRNA in IFN-γ–stimulated monocytes. IL-10 inhibition of IFN-γ–induced steady-state mRNA was detected at 3 hours and remained at 24 hours. Nuclear run-on transcription assays showed that IL-10 inhibited the rate of IFN-γ–induced transcription of the ICAM-1 gene, and mRNA stability studies showed that IL-10 did not alter the half-life of IFN-γ–induced ICAM-1 message. Thus, IL-10 inhibits IFN-γ–induced ICAM-1 expression in monocytes primarily at the level of gene transcription. Activation of IFN-γ–responsive genes requires tyrosine phosphorylation of the transcription factor STAT-1α (signal transducer and activator of transcription-1α). However, IL-10 did not affect IFN-γ–induced tyrosine phosphorylation of STAT-1α or alter STAT-1α binding to the IFN-γ response element (IRE) in the ICAM-1 promoter. Instead, IL-10 prevented IFN-γ–induced binding activity at the NF-κB site of the tumor necrosis factor α (TNF-α)–responsive NF-κB/C/EBP composite element in the ICAM-1 promoter. These data indicate that IL-10 inhibits IFN-γ–induced transcription of the ICAM-1 gene by a regulatory mechanism that may involve NF-κB.

© 1997 by The American Society of Hematology.
media contained RPMI 1640 (GIBCO Laboratories, Grand Island, NY), 10% heat-inactivated fetal calf serum (FCS) (Atlanta Biologicals, Norcross, GA), 2 mM/L-glutamine, penicillin-streptomycin (100 μg/mL), and 10 mM/L HEPES (Sigma Chemical Co) (complete media). Anti–DR, anti–ICAM-1, and isotype control were purchased from Shift assays (EMSAs) were performed as we have previously described. FCS. Cell preparations yielded greater than 85% CD14+ cells. Monocytes were incubated with phycoerythrin (PE)- and FITC-24 to 36 hours with 10^7 cpm labeled RNA. Filters were washed with PstI digestion double-stranded synthetic deoxyoligonucleotide probes for 30 min at 0°C. Adherent monocytes were harvested by removing the cell pellet by adherence to 150-mm tissue culture dishes (Corning Inc, Corning, NY) for 1.5 hours at 37°C in complete media. Nonadherent cells were collected by vigorous washing in cold RPMI 1640 in 3% FCS. Cell preparations yielded greater than 85% CD14+ monocytes as determined by flow cytometry.

FACS analysis. Peripheral blood mononuclear cells (2 × 10^9) were cultured in 24-well Falcon culture dishes (Becton Dickinson Co, Lincoln Park, NJ) for 1.5 hours, and then nonadherent cells were removed by vigorous washing with cold RPMI 1640 with 3% FCS. Monocytes were stimulated in the presence or absence of IFN-γ, IL-10, or both in combination in complete media. Adherent cells were harvested using a cell scraper and then washed with buffer (phosphate-buffered saline, 3% bovine serum albumin, and 0.01% NaN3). Cells were incubated with phycoerythrin (PE)- and FITC-conjugated monoclonal antibodies for 30 minutes on ice, washed twice in buffer, and fixed with 1% paraformaldehyde. Monocytes were identified as CD14+ using PE-conjugated anti-CD14 monoclonal antibody, and electronically gated CD14+ cells were analyzed for intensity of green fluorescence with FITC-conjugated anti–ICAM-1 and FITC-conjugated anti–HLA-DR monoclonal antibody. PE-conjugated anti-CD14 monoclonal antibody, FITC-conjugated anti-DR, anti–ICAM-1, and isotype control were purchased from Coulter (Hialeah, FL).

Northern blot analysis. Total cellular RNA was isolated using RNAzol (Tel-test ‘B’ Inc, Friendswood, TX) from adherent monocytes (1 × 10^9) stimulated with cytokines in complete media for the times and cytokine concentrations indicated in the figure. Total RNA samples (5 to 10 μg) were loaded onto a 1.2% agarose gel containing formaldehyde, and then blotted onto BA-S NC nitrocellulose membranes (Midwest Scientific, St Louis, MO). The membrane was baked for 2 hours at 80°C and then probed in a 50% formamide hybridization solution overnight at 42°C. The probes, 1,400-basepair (bp) ICAM-1 (SalI-BglII digestion fragment) and 1,400-bp gyaleraldehyde-3-phosphate dehydrogenase (GAPDH) Pro1-Pro3 digestion fragment were labeled by random priming (Stratagene, La Jolla, CA) with 50 μCi [α-32P]dCTP (3,000 Ci/mmol; Amersham, Arlington Heights, IL). The membrane was washed and autoradiographed at −70°C for 1 to 3 days. Filters were stripped and rehybridized with [32P]-labeled GAPDH under the same conditions. Levels of ICAM-1 mRNA are expressed as the ratio of ICAM-1 to GAPDH mRNA determined by laser densitometry (Personal Densitometer SI, Molecular Dynamics Inc, Sunnyvale, CA).

ICAM-1 mRNA stability analysis. Monocytes were stimulated for 16 hours with IFN-γ (100 U/mL) in the presence or absence of IL-10 (100 U/mL) in complete media. Actinomycin D (5 μg/mL) was added to the cells, and RNA was extracted at 0, 1, 2, and 3 hours. Northern blot analysis was performed as described earlier. The maximum levels of ICAM-1 mRNA determined by densitometry for IFN-γ and IFN-γ plus IL-10 were set at 100% and plotted against the percent reduction in the amount of mRNA.

Nuclear run-on analysis. Monocytes were unstimulated or stimulated with IFN-γ (100 U/mL), IL-10 (100 U/mL), or a combination of both for 3 hours at 37°C in complete media. Cells were washed, scraped from the culture dishes, centrifuged, resuspended in Nonidet P-40 (NP-40) lysis buffer (10 mM/L Tris hydrochloride, pH 7.4, 10 mM/L NaCl, 3 mM/L MgCl₂, and 0.5% NP-40) for 5 minutes at 4°C, and pelleted to isolate the nuclei. Nuclei were resuspended in 200 μL glycerol buffer (0.1 mM/L EDTA, 40% glycerol, 5 mM/L MgCl₂, and 50 mM/L Tris hydrochloride, pH 8.3) and flash-frozen in liquid nitrogen for storage at −80°C. Intact nuclei (200 μL) were thawed, and 200 μL transcription buffer (10 mM/L Tris hydrochloride, Tris, 5 mM/L MgCl₂, 0.3 μM/L KCl, 1 mM/L unlabeled ATP, CTP, and UTP ribonucleotides, and 5 mM/L DTT), 250 mCi [α-32P]GTP (3,000 Ci/mmol; Amerham Corp), and 500 U RNAse (Promega, Madison, WI) were incubated at 30°C for 30 minutes. For RNA extraction, nuclei were mixed with 30 μL (1 mg/mL) RNase-free DNase I (Promega) and 600 μL HSB buffer (0.5 mol/L NaCl, 50 mM/L MgCl₂, 2 mM/L CaCl₂, and 10 mM/L Tris hydrochloride, pH 7.4) and vigorously pipetted and incubated for 5 minutes at 30°C. For RNA purification, 200 μL sodium dodecyl sulfate (SDS)/Tris buffer (5% SDS, 0.5 mM/L Tris hydrochloride, pH 7.4, and 0.125 mol/L EDTA) and 5 μL (50 mg/mL) proteinase K (Promega) were incubated at 30°C for 30 minutes at 42°C. RNA was extracted with an equal volume of phenol/chloroform/isooamyl alcohol (25:24:1). Nonribonucleosides were solated with 5 μg linearized ICAM-1 cDNA and GAPDH cDNA, washed six times with SSC (1× SSC is 0.15 mol/L NaCl plus 0.015 mol/L sodium citrate), dried, and baked for 2 hours at 80°C. Hybridization was performed at 42°C for 24 to 36 hours with 10 6 cpm labeled RNA. Filters were washed with 0.2× SSC/0.1% SDS for 15 minutes at room temperature, followed by 0.2× SSC/0.5% SDS for 10 minutes at 42°C, and with 0.2× SSC/0.1% SDS for 10 minutes at 42°C. Membranes were autoradiographed at −70°C for 4 to 7 days. Levels of ICAM-1 mRNA were normalized by expressing the ratio of ICAM-1 RNA to GAPDH RNA determined by laser densitometry.

Electrophoretic mobility shift analysis. Electrophoretic mobility shift assays (EMSAs) were performed as we have previously described.11 Nuclear extracts were prepared by treating the cell pellet with cold buffer (10 mM/L HEPES, pH 7.9, 10 mM/L KCl, 0.1 mM/L EDTA, 0.1 mM/L EGTA, 1 mM/L DTT, and 0.5 mM/L phenylmethylsulfonyl fluoride [PMSF]) for 15 minutes to allow cells to swell, and then 25 μL 10% NP-40 was added and the nuclei were pelleted. The nuclear pellet was resuspended in buffer (20 mM/L HEPES, pH 7.9, 0.4 mol/L NaCl, 1 mM/L EDTA, 1 mM/L EGTA, 1 mM/L DTT, and 1 mM/L PMSF) for 15 minutes at 4°C. Debris was pelleted, and supernatants were frozen at −70°C. Nuclear extracts (5 to 7 μg protein) prepared from cytokine-activated monocytes were incubated with 50,000 cpm (0.5 ng) [32P]-end-labeled double-stranded synthetic deoxyoligonucleotide probes for 30 minutes at room temperature in a 20-μL reaction volume containing 12% glycerol, 12 mM/L HEPES-NaOH (pH 7.9), 60 mM/L KCl, 5 mM/L MgCl₂, 4 mM/L Tris hydrochloride (pH 7.9), 0.6 mM/L EDTA (pH 7.9), 0.6 mM/L DTT, and 1 μg poly(dI:dC). Protein-DNA complexes were resolved in 5% native polyacrylamide gels. Gels were dried and exposed overnight to x-ray film (Eastman Kodak Co, Rochester, NY) with an intensifying screen at ~70°C. For supershift, nuclear extracts (2 to 5 μg protein) were incubated with 2 μg anti–STAT-1α or anti–STAT3 antibodies for 30 minutes before incubation with labeled probe. The oligonucleotides used in these studies were as follows: ICAM-1 IRF, 5'-GAGGTTTCCCGGGGAAA-GCAGC-3'; c-fos SIE, 5'-GTGACATTTCGGATAACTTGGTCTACA-3'; ICAM-1 Sp-1, 5'-ACCGCGCCCGCGCGCG-3'; and ICAM-1 proximal NF-κB, 5'-GCTCGGGAACTTCCAGC-3'.

Immunoprecipitation of STAT-1α. Adherent monocytes were stimulated in the presence or absence of cytokines for 5 minutes at 37°C in complete media. Cells were lysed with lysis buffer (50 mM/L Tris hydrochloride, 1 mM/L EDTA, 0.15 mol/L NaCl, 1%
IL-10 inhibits ICAM-1 gene transcription. IL-10 inhibition of ICAM-1 mRNA may result from either a reduction

Table 1. IL-10 Inhibits Cell Surface Expression of ICAM-1

<table>
<thead>
<tr>
<th>Donor</th>
<th>IFN-γ</th>
<th>IL-10</th>
<th>ICAM-1</th>
<th>HLA-DR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–</td>
<td>+</td>
<td>402 (76)</td>
<td>1,413 (486)</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>+</td>
<td>208</td>
<td>319</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>–</td>
<td>635</td>
<td>3,563</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>269</td>
<td>569</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>+</td>
<td>401 (105)</td>
<td>1,153 (402)</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>+</td>
<td>262</td>
<td>318</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>–</td>
<td>928</td>
<td>5,044</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>432</td>
<td>940</td>
</tr>
<tr>
<td>3</td>
<td>–</td>
<td>+</td>
<td>996 (160)</td>
<td>2,023 (1,118)</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>578</td>
<td>607</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>–</td>
<td>2,230</td>
<td>9,172</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>1,277</td>
<td>1,544</td>
</tr>
<tr>
<td>4</td>
<td>–</td>
<td>+</td>
<td>913 (181)</td>
<td>2,858 (869)</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>+</td>
<td>475</td>
<td>592</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>466</td>
<td>590</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>740</td>
<td>1,739</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>–</td>
<td>1,462</td>
<td>6,934</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>938</td>
<td>2,593</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>1,086</td>
<td>2,933</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>1,528</td>
<td>4,796</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>+</td>
<td>284 (89)</td>
<td>697 (427)</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>+</td>
<td>214</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>212</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>266</td>
<td>605</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>–</td>
<td>627</td>
<td>2,958</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>456</td>
<td>905</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>441</td>
<td>718</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>597</td>
<td>2,410</td>
</tr>
</tbody>
</table>

Values in parentheses indicate ICAM-1 and MHC-DR expression on freshly isolated cells given as fluorescence values.
in transcription of the ICAM-1 gene and/or an increase in degradation of ICAM-1 mRNA. We performed nuclear run-on assays to determine if IL-10 inhibited ICAM-1 gene transcription. Nuclei isolated from monocytes activated with IFN-γ in the presence or absence of IL-10 for 3 hours were monitored for ICAM-1 transcription. IFN-γ increased the rate of ICAM-1 gene transcription in monocytes, and IL-10 prevented this increased transcription (Fig 2). These data demonstrate that IL-10 regulation of ICAM-1 in monocytes is mediated at least in part by transcription.

It has been reported that IL-10, in addition to inhibiting cytokine gene transcription, in some instances enhanced mRNA degradation. To determine if IL-10 alters the half-life \(t_{1/2} \) of ICAM-1 mRNA, we used Actinomycin D to block transcription in activated monocytes and determined the rate of mRNA degradation by Northern blot analysis. Monocytes were stimulated with IFN-γ alone or IFN-γ plus IL-10 for 16 hours. Actinomycin D (5 μg/ml) was then added to prevent further mRNA synthesis. RNA was isolated at different time points, and ICAM-1 mRNA was analyzed by Northern blot. There was a steady reduction in ICAM-1 mRNA over the 3-hour period, with a \(t_{1/2} \) of about 1 hour (Fig 3). However, IL-10 did not enhance the rate of ICAM-1 mRNA degradation, suggesting that IL-10 does not alter ICAM-1 mRNA stability. Taken together, these data demonstrate that IL-10 inhibits IFN-γ–induced ICAM-1 expression primarily at the level of gene transcription.

Effect of IL-10 on STAT-1α binding activity. IFN-γ has been shown to activate the transcription factor STAT-1α. Look et al described an IRE in the ICAM-1 promoter between nucleotide positions −116 and −106 that is required for ICAM-1 promoter induction by IFN-γ. To determine whether the IRE motif could bind IFN-γ–induced or IL-10–induced DNA binding proteins in monocytes, we synthesized a 20-bp oligonucleotide encompassing the IRE, prepared nuclear extracts from IFN-γ–treated monocytes in the presence or absence of IL-10 for 0.5 and 1 hour, and assessed DNA binding activity by EMSA. IFN-γ induced a complex that was evident as early as 30 minutes (Fig 4). In contrast, IL-10 induced two weak complexes: one comigrated with the IFN-γ–induced complex, and the second migrated more slowly. When IFN-γ and IL-10 were combined to stimulate monocytes, we detected a dominant complex corresponding to the IFN-γ–induced complex and a much weaker complex corresponding to the slower-migrating IL-10 complex. These data show that IL-10 does not inhibit the IFN-γ–induced complex.

Competitive-inhibition studies demonstrated the specificity of the IFN-γ–activated IRE binding complex. We used the c-sis inducible element (SIE) from the c-fos promoter shown previously to bind STAT-1α, to assess whether the IRE is also recognized by STAT-1α. Nuclear extracts from monocytes stimulated with IFN-γ plus IL-10 were incubated with labeled IRE and a 100-fold molar excess of IRE or SIE. Both the IRE and the SIE competed for proteins binding to the IRE, whereas no competition was observed for an unrelated ICAM-1 Sp1 binding sequence (Fig 5). These data demonstrate that IFN-γ and IL-10 induced specific gel shift complexes on the ICAM-1 IRE that may contain STAT-1α.

To directly demonstrate the presence of STAT-1α, we incubated STAT-1α antibody with nuclear extracts and assessed the effects on binding activity by EMSA. Anti–STAT-1α antibody supershifted the IFN-γ–induced IRE binding complex, whereas the anti–c-fos B antibody had no effect on the binding complex (Fig 6A). The combination of IFN-γ and IL-10 also induced an IRE binding complex that was supershifted by the anti–STAT-1α antibody. These data demonstrate that IL-10 does not alter STAT-1α binding to the ICAM-1 IRE. To determine if STAT-3 was present in the ICAM-1 IRE binding complexes, antibody to STAT-3...
IL-10 BLOCKS IFN-γ-INDUCED ICAM-TRANSCRIPTION

IL-10 inhibits IFN-γ–induced ICAM-1 gene transcription. (A) Nuclei were isolated from monocytes stimulated with IFN-γ (100 U/mL) in the presence or absence of IL-10 (100 U/mL) for 3 hours. Transcription occurred in the presence of labeled ribonucleotides. Isolated RNA was hybridized to ICAM-1 cDNA and GAPDH cDNA that was slot blotted onto nitrocellulose. (B) Normalized absorption values were obtained by densitometry scanning of the ICAM-1. From the ratio of ICAM-1 to GAPDH, the fold increase over untreated control cells was calculated. Data are representative of 2 experiments.

Effect of IL-10 on STAT-1α phosphorylation. STAT-1α is rapidly activated by tyrosine phosphorylation, which allows STAT-1α dimers to bind IRE sequences. Because we were unable to identify a difference in STAT-1α binding in the presence of IL-10, it appears that IL-10 does not inhibit tyrosine phosphorylation of STAT-1α. To directly demonstrate this, we immunoprecipitated STAT-1α from IFN-γ–activated monocytes in the presence or absence of IL-10. Adherent monocytes were treated with cytokines for 5 minutes, solubilized, and immunoprecipitated with anti–STAT-1α antibody. The immunocomplexes were washed, resolved on 8% SDS-PAGE, transferred to nitrocellulose, and probed with antiphosphotyrosine antibody 4G10. In monocytes treated with IFN-γ and IL-10 (Fig 7, lane 4), there was approximately the same level of STAT-1α phosphorylation versus IFN-γ alone (lane 2). Normalization of phosphorylated STAT-1α to the level of STAT-1α protein by laser densitometry showed that an equivalent amount of phosphorylated STAT-1α was detected from IFN-γ and IFN-γ plus IL-10 precipitates. These data in combination with the DNA binding experiments indicate that IL-10 does not inhibit the activity of IFN-γ by altering the binding activity of tyrosine phosphorylated STAT-1α protein.

IL-10 inhibits binding of NF-κB to a proximal site in the ICAM-1 promoter. ICAM-1 promoter also contains binding sites for AP-1, AP-2, AP-3, NF-κB, and Sp1. In EMSAs, we were unable to detect binding of nuclear proteins was incubated with nuclear extracts and assessed by EMSA. Anti–STAT-3 antibody did not supershift the IFN-γ–induced binding complex (lane 4), consistent with previous reports that IFN-γ specifically activates STAT-1α (Fig 6B). However, STAT-3 and STAT-1α were identified in the IRE binding complexes in IL-10–activated monocytes (lanes 7 and 8).

IL-10 does not enhance mRNA degradation. (A) Monocytes were stimulated for 24 hours with IFN-γ (100 U/mL) in the presence or absence of IL-10 (100 U/mL). Actinomycin D (5 μg/mL) was added to the cells, and RNA was extracted at 0, 1, 2, and 3 hours. Northern blot analysis was performed. (B) Induced levels of ICAM-1 mRNA at time zero were determined by densitometry for IFN-γ and IFN-γ plus IL-10. The values were set at 100% and plotted against the percent reduction in the amount of mRNA. The RNA half-life measured the time at which mRNA declined by 50%. Data are representative of 3 experiments.
We show that regulation of ICAM-1 by IL-10 occurs at the level of gene transcription and not at the level of mRNA stability. These observations suggest that IL-10 targets transcription factors interacting with the ICAM-1 promoter elements. Feldman et al. reported that IgG complexes inhibit FcγRI gene transcription in monocytes by inhibiting phosphorylation and binding activity of STAT-1α. However, we were unable to detect any effect of IL-10 on IFN-γ induction of STAT-1α phosphorylation or binding to the ICAM-1 IRE. These findings suggest that IL-10 inhibition of ICAM-1 may involve a novel mechanism distinct from that used to downregulate the FcγRI gene.

It is interesting that ICAM-1 expression in microglial cells, macrophage-like cells in the central nervous system, is induced by IFN-γ stimulation and inhibited by IL-10. However, unlike the effect in human monocytes, IL-10 does not inhibit ICAM-1 mRNA accumulation. In microglial cells, IL-10 affects ICAM-1 expression at the translational and/or posttranslational level, whereas in human monocytes it affects transcription. There are several possible differences between these two cell populations. Microglial cells are a differentiated macrophage-like cell, and transcriptional activation of genes in monocytes is developmentally regulated. There are a number of possible mechanisms that may be responsible for inhibition of IFN-γ-induced ICAM-1 transcription in monocytes. Several observations indicate that not only tyrosine phosphorylation but also serine phosphorylation is required for transcriptional activity of STAT proteins. Eilers et al. showed that a reduction in STAT-1α

DISCUSSION

In this study, we investigated the mechanism by which IL-10 inhibits ICAM-1 expression in human monocytes activated with IFN-γ. We show that regulation of ICAM-1 by IL-10 occurs at the level of gene transcription and not at the level of mRNA stability. These observations suggest that IL-10 targets transcription factors interacting with the ICAM-1 promoter elements. Feldman et al. reported that IgG complexes inhibit FcγRI gene transcription in monocytes by inhibiting phosphorylation and binding activity of STAT-1α. However, we were unable to detect any effect of IL-10 on IFN-γ induction of STAT-1α phosphorylation or binding to the ICAM-1 IRE. These findings suggest that IL-10 inhibition of ICAM-1 may involve a novel mechanism distinct from that used to downregulate the FcγRI gene.

It is interesting that ICAM-1 expression in microglial cells, macrophage-like cells in the central nervous system, is induced by IFN-γ stimulation and inhibited by IL-10. However, unlike the effect in human monocytes, IL-10 does not inhibit ICAM-1 mRNA accumulation. In microglial cells, IL-10 affects ICAM-1 expression at the translational and/or posttranslational level, whereas in human monocytes it affects transcription. There are several possible differences between these two cell populations. Microglial cells are a differentiated macrophage-like cell, and transcriptional activation of genes in monocytes is developmentally regulated. Also, since microglial cells are rodent-derived, the differences may be due to species differences.

There are a number of possible mechanisms that may be responsible for inhibition of IFN-γ-induced ICAM-1 transcription in monocytes. Several observations indicate that not only tyrosine phosphorylation but also serine phosphorylation is required for transcriptional activity of STAT proteins. Eilers et al. showed that a reduction in STAT-1α
IL-10 BLOCKS IFN-γ–INDUCED ICAM-TRANSCRIPTION

Fig 7. IL-10 does not inhibit tyrosine phosphorylation of STAT-1α.
Monocytes were stimulated with IFN-γ (100 U/mL) in the presence or absence of IL-10 (100 U/mL) for 5 minutes. Cells were lysed, and STAT-1α was immunoprecipitated with Sepharose-bound anti-STAT-1 antibody. Immunoprecipitates were resolved on SDS-PAGE, blotted to nitrocellulose, probed with an antiphosphotyrosine antibody (4G10), and developed by enhanced chemiluminescence. In the lower panel, the blot was stripped and reprobed with anti-STAT-1 antibody and developed. Data are representative of 2 separate experiments.

One of the main outcomes of the inhibitory activity of IL-10 is its ability to alter the composition of dimers formed on the IRE. In monocytes stimulated with IFN-γ, STAT-1α would form homodimers capable of activating the ICAM-1 promoter, whereas in IL-10–activated monocytes, there would be mostly STAT-3 homodimers, which cannot activate the ICAM-1 promoter. Consequently, the combination of IFN-γ/IL-10 could produce heterodimers of STAT-1α and STAT-3 that may function as an inhibitory complex, thereby reducing ICAM-1 transcription.
IL-10 in monocytes is the reduction in cytokine synthesis. Although IL-10 controls cytokine production at the level of transcription, little is known about the mechanism. Experiments from Geng et al.\(^{15}\) showed that LPS induces the early tyrosine kinase p56 lyn in monocytes and that IL-10 inhibits p56 lyn activity. Since tyrosine kinase activity is necessary for LPS activation of IL-1, IL-6, and TNF-\(\alpha\), this may be the mechanism by which IL-10 inhibits cytokine production. Wang et al.\(^{41}\) also reported that LPS- and TNF-\(\alpha\)-induced NF-\(\kappa\)B activity is inhibited by IL-10. They postulated that since NF-\(\kappa\)B activity is required for transcription of many cytokine genes, this may be a common mechanism by which IL-10 inhibits transcription. Consistent with a role for NF-\(\kappa\)B in IL-10 inhibition, we showed that IL-10 inhibited binding of IFN-\(\gamma\)-induced nuclear factors to the proximal ICAM-1 NF-\(\kappa\)B binding site. Taken together, these observations suggest that IL-10 inhibition of IFN-\(\gamma\)-induced ICAM-1 transcription is complex and may involve the interaction of multiple transcription factor binding sites.

REFERENCES

5. Del Prete G, De Carli M, Almerigogna F, Giudizi MG, Biagiotti R, Romagnani S: Human IL-10 is produced by both type 1 helper (Th1) and type 2 helper (Th2) T cell clones and inhibits their antigen-specific proliferation and cytokine production. J Immunol 150:353, 1993
17. Most J, Schwaebel W, Drach J, Sommerauer A, Dierich MP:
18. Simmons D, Makgoba MW, Seed B: ICAM-1, an adhesion ligand of LFA-1, is homologous to the neural cell adhesion molecule NCAM. Nature 331:624, 1988