To enable effective oxygen transport, ∼200 billion red blood cells (RBCs) need to be produced every day in the bone marrow through the fine-tuned process of erythropoiesis. Erythropoiesis is regulated at multiple levels to ensure that defective RBC maturation or overproduction can be avoided. Here, we provide an overview of different layers of this control, ranging from cytokine signaling mechanisms that enable extrinsic regulation of RBC production to intrinsic transcriptional pathways necessary for effective erythropoiesis. Recent studies have also elucidated the importance of posttranscriptional regulation and highlighted additional gatekeeping mechanisms necessary for effective erythropoiesis. We additionally discuss the insights gained by studying human genetic variation affecting erythropoiesis and highlight the discovery of BCL11A as a regulator of hemoglobin switching through genetic studies. Finally, we provide an outlook of how our ability to measure multiple facets of this process at single-cell resolution, while accounting for the impact of human variation, will continue to refine our knowledge of erythropoiesis and how this process is perturbed in disease. As we learn more about this intricate and important process, additional opportunities to modulate erythropoiesis for therapeutic purposes will undoubtedly emerge.

1.
Sankaran
VG
,
Weiss
MJ
.
Anemia: progress in molecular mechanisms and therapies
.
Nat Med.
2015
;
21
(
3
):
221
-
230
.
2.
Chasis
JA
,
Mohandas
N
.
Erythroblastic islands: niches for erythropoiesis
.
Blood.
2008
;
112
(
3
):
470
-
478
.
3.
Li
H
,
Natarajan
A
,
Ezike
J
, et al
.
Rate of progression through a continuum of transit-amplifying progenitor cell states regulates blood cell production
.
Dev Cell.
2019
;
49
(
1
):
118
-
129.e7
.
4.
Liggett
LA
,
Sankaran
VG
.
Unraveling hematopoiesis through the lens of genomics
.
Cell.
2020
;
182
(
6
):
1384
-
1400
.
5.
Tusi
BK
,
Wolock
SL
,
Weinreb
C
, et al
.
Population snapshots predict early haematopoietic and erythroid hierarchies
.
Nature.
2018
;
555
(
7694
):
54
-
60
.
6.
Velten
L
,
Haas
SF
,
Raffel
S
, et al
.
Human haematopoietic stem cell lineage commitment is a continuous process
.
Nat Cell Biol.
2017
;
19
(
4
):
271
-
281
.
7.
Huang
P
,
Zhao
Y
,
Zhong
J
, et al
.
Putative regulators for the continuum of erythroid differentiation revealed by single-cell transcriptome of human BM and UCB cells
.
Proc Natl Acad Sci USA.
2020
;
117
(
23
):
12868
-
12876
.
8.
Yan
H
,
Ali
A
,
Blanc
L
, et al
.
Comprehensive phenotyping of erythropoiesis in human bone marrow: evaluation of normal and ineffective erythropoiesis
.
Am J Hematol.
2021
;
96
(
9
):
1064
-
1076
.
9.
Hu
J
,
Liu
J
,
Xue
F
, et al
.
Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo
.
Blood.
2013
;
121
(
16
):
3246
-
3253
.
10.
Ashley
RJ
,
Yan
H
,
Wang
N
, et al
.
Steroid resistance in Diamond Blackfan anemia associates with p57Kip2 dysregulation in erythroid progenitors
.
J Clin Invest.
2020
;
130
(
4
):
2097
-
2110
.
11.
Goodman
JW
,
Hall
EA
,
Miller
KL
,
Shinpock
SG
.
Interleukin 3 promotes erythroid burst formation in “serum-free” cultures without detectable erythropoietin
.
Proc Natl Acad Sci USA.
1985
;
82
(
10
):
3291
-
3295
.
12.
Migliaccio
G
,
Migliaccio
AR
,
Adamson
JW
.
In vitro differentiation of human granulocyte/macrophage and erythroid progenitors: comparative analysis of the influence of recombinant human erythropoietin, G-CSF, GM-CSF, and IL-3 in serum-supplemented and serum-deprived cultures
.
Blood.
1988
;
72
(
1
):
248
-
256
.
13.
Sui
X
,
Krantz
SB
,
Zhao
ZJ
.
Stem cell factor and erythropoietin inhibit apoptosis of human erythroid progenitor cells through different signalling pathways
.
Br J Haematol.
2000
;
110
(
1
):
63
-
70
.
14.
Nocka
K
,
Majumder
S
,
Chabot
B
, et al
.
Expression of c-kit gene products in known cellular targets of W mutations in normal and W mutant mice—evidence for an impaired c-kit kinase in mutant mice
.
Genes Dev.
1989
;
3
(
6
):
816
-
826
.
15.
Koury
MJ
,
Bondurant
MC
.
Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells
.
Science.
1990
;
248
(
4953
):
378
-
381
.
16.
Broudy
VC
,
Lin
N
,
Brice
M
,
Nakamoto
B
,
Papayannopoulou
T
.
Erythropoietin receptor characteristics on primary human erythroid cells
.
Blood.
1991
;
77
(
12
):
2583
-
2590
.
17.
Reissmann
KR
.
Studies on the mechanism of erythropoietic stimulation in parabiotic rats during hypoxia
.
Blood.
1950
;
5
(
4
):
372
-
380
.
18.
Wu
H
,
Liu
X
,
Jaenisch
R
,
Lodish
HF
.
Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor
.
Cell.
1995
;
83
(
1
):
59
-
67
.
19.
Grover
A
,
Mancini
E
,
Moore
S
, et al
.
Erythropoietin guides multipotent hematopoietic progenitor cells toward an erythroid fate
.
J Exp Med.
2014
;
211
(
2
):
181
-
188
.
20.
Notta
F
,
Zandi
S
,
Takayama
N
, et al
.
Distinct routes of lineage development reshape the human blood hierarchy across ontogeny
.
Science.
2016
;
351
(
6269
):
aab2116
.
21.
Zhang
H
,
Wang
S
,
Liu
D
, et al
.
EpoR-tdTomato-Cre mice enable identification of EpoR expression in subsets of tissue macrophages and hematopoietic cells
.
Blood.
2021
;
138
(
20
):
1986
-
1997
.
22.
Jacobs
K
,
Shoemaker
C
,
Rudersdorf
R
, et al
.
Isolation and characterization of genomic and cDNA clones of human erythropoietin
.
Nature.
1985
;
313
(
6005
):
806
-
810
.
23.
Phrommintikul
A
,
Haas
SJ
,
Elsik
M
,
Krum
H
.
Mortality and target haemoglobin concentrations in anaemic patients with chronic kidney disease treated with erythropoietin: a meta-analysis
.
Lancet.
2007
;
369
(
9559
):
381
-
388
.
24.
Bohlius
J
,
Bohlke
K
,
Castelli
R
, et al
.
Management of cancer-associated anemia with erythropoiesis-stimulating agents: ASCO/ASH clinical practice guideline update
.
J Clin Oncol.
2019
;
37
(
15
):
1336
-
1351
.
25.
Ratajczak
J
,
Zhang
Q
,
Pertusini
E
,
Wojczyk
BS
,
Wasik
MA
,
Ratajczak
MZ
.
The role of insulin (INS) and insulin-like growth factor-I (IGF-I) in regulating human erythropoiesis. Studies in vitro under serum-free conditions—comparison to other cytokines and growth factors
.
Leukemia.
1998
;
12
(
3
):
371
-
381
.
26.
Suragani
RNVS
,
Cadena
SM
,
Cawley
SM
, et al
.
Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis
.
Nat Med.
2014
;
20
(
4
):
408
-
414
.
27.
Zermati
Y
,
Fichelson
S
,
Valensi
F
, et al
.
Transforming growth factor inhibits erythropoiesis by blocking proliferation and accelerating differentiation of erythroid progenitors
.
Exp Hematol.
2000
;
28
(
8
):
885
-
894
.
28.
Wessely
O
,
Deiner
EM
,
Beug
H
,
von Lindern
M
.
The glucocorticoid receptor is a key regulator of the decision between self-renewal and differentiation in erythroid progenitors
.
EMBO J.
1997
;
16
(
2
):
267
-
280
.
29.
Lee
H-Y
,
Gao
X
,
Barrasa
MI
, et al
.
PPAR-α and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal
.
Nature.
2015
;
522
(
7557
):
474
-
477
.
30.
Andrews
NC
.
Forging a field: the golden age of iron biology
.
Blood.
2008
;
112
(
2
):
219
-
230
.
31.
Kautz
L
,
Jung
G
,
Valore
EV
,
Rivella
S
,
Nemeth
E
,
Ganz
T
.
Identification of erythroferrone as an erythroid regulator of iron metabolism [published correction appears in Nat Genet. 2020;52(4):463]
.
Nat Genet.
2014
;
46
(
7
):
678
-
684
.
32.
Zhang
Y
,
Wang
L
,
Dey
S
, et al
.
Erythropoietin action in stress response, tissue maintenance and metabolism
.
Int J Mol Sci.
2014
;
15
(
6
):
10296
-
10333
.
33.
Ugo
V
,
Marzac
C
,
Teyssandier
I
, et al
.
Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera
.
Exp Hematol.
2004
;
32
(
2
):
179
-
187
.
34.
Chida
D
,
Miura
O
,
Yoshimura
A
,
Miyajima
A
.
Role of cytokine signaling molecules in erythroid differentiation of mouse fetal liver hematopoietic cells: functional analysis of signaling molecules by retrovirus-mediated expression
.
Blood.
1999
;
93
(
5
):
1567
-
1578
.
35.
Arcasoy
MO
,
Jiang
X
.
Co-operative signalling mechanisms required for erythroid precursor expansion in response to erythropoietin and stem cell factor
.
Br J Haematol.
2005
;
130
(
1
):
121
-
129
.
36.
James
C
,
Ugo
V
,
Le Couédic
J-P
, et al
.
A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera
.
Nature.
2005
;
434
(
7037
):
1144
-
1148
.
37.
Kralovics
R
,
Passamonti
F
,
Buser
AS
, et al
.
A gain-of-function mutation of JAK2 in myeloproliferative disorders
.
N Engl J Med.
2005
;
352
(
17
):
1779
-
1790
.
38.
Baxter
EJ
,
Scott
LM
,
Campbell
PJ
, et al;
Cancer Genome Project
.
Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders
.
Lancet.
2005
;
365
(
9464
):
1054
-
1061
.
39.
Scott
LM
,
Tong
W
,
Levine
RL
, et al
.
JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis
.
N Engl J Med.
2007
;
356
(
5
):
459
-
468
.
40.
Yoshimura
A
,
Longmore
G
,
Lodish
HF
.
Point mutation in the exoplasmic domain of the erythropoietin receptor resulting in hormone-independent activation and tumorigenicity
.
Nature.
1990
;
348
(
6302
):
647
-
649
.
41.
Kim
AR
,
Ulirsch
JC
,
Wilmes
S
, et al
.
Functional selectivity in cytokine signaling revealed through a pathogenic EPO mutation
.
Cell.
2017
;
168
(
6
):
1053
-
1064.e15
.
42.
Mohan
K
,
Ueda
G
,
Kim
AR
, et al
.
Topological control of cytokine receptor signaling induces differential effects in hematopoiesis
.
Science.
2019
;
364
(
6442
):
eaav7532
.
43.
Giani
FC
,
Fiorini
C
,
Wakabayashi
A
, et al
.
Targeted application of human genetic variation can improve red blood cell production from stem cells
.
Cell Stem Cell.
2016
;
18
(
1
):
73
-
78
.
44.
Adlung
L
,
Stapor
P
,
Tönsing
C
, et al
.
Cell-to-cell variability in JAK2/STAT5 pathway components and cytoplasmic volumes defines survival threshold in erythroid progenitor cells
.
Cell Rep.
2021
;
36
(
6
):
109507
.
45.
Filser
M
,
Giansily-Blaizot
M
,
Grenier
M
, et al
.
Increased incidence of germline PIEZO1 mutations in individuals with idiopathic erythrocytosis
.
Blood.
2021
;
137
(
13
):
1828
-
1832
.
46.
Camps
C
,
Petousi
N
,
Bento
C
, et al;
WGS500 Consortium
.
Gene panel sequencing improves the diagnostic work-up of patients with idiopathic erythrocytosis and identifies new mutations
.
Haematologica.
2016
;
101
(
11
):
1306
-
1318
.
47.
Platzbecker
U
,
Germing
U
,
Götze
KS
, et al
.
Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose-finding study with long-term extension study
.
Lancet Oncol.
2017
;
18
(
10
):
1338
-
1347
.
48.
Chen
N
,
Hao
C
,
Liu
B-C
, et al
.
Roxadustat treatment for anemia in patients undergoing long-term dialysis
.
N Engl J Med.
2019
;
381
(
11
):
1011
-
1022
.
49.
Chen
N
,
Hao
C
,
Peng
X
, et al
.
Roxadustat for anemia in patients with kidney disease not receiving dialysis
.
N Engl J Med.
2019
;
381
(
11
):
1001
-
1010
.
50.
Hattangadi
SM
,
Wong
P
,
Zhang
L
,
Flygare
J
,
Lodish
HF
.
From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications
.
Blood.
2011
;
118
(
24
):
6258
-
6268
.
51.
Capellera-Garcia
S
,
Pulecio
J
,
Dhulipala
K
, et al
.
Defining the minimal factors required for erythropoiesis through direct lineage conversion
.
Cell Rep.
2016
;
15
(
11
):
2550
-
2562
.
52.
Katsumura
KR
,
Bresnick
EH
;
GATA Factor Mechanisms Group
.
The GATA factor revolution in hematology
.
Blood.
2017
;
129
(
15
):
2092
-
2102
.
53.
Wakabayashi
A
,
Ulirsch
JC
,
Ludwig
LS
, et al
.
Insight into GATA1 transcriptional activity through interrogation of cis elements disrupted in human erythroid disorders
.
Proc Natl Acad Sci USA.
2016
;
113
(
16
):
4434
-
4439
.
54.
Gutiérrez
L
,
Tsukamoto
S
,
Suzuki
M
, et al
.
Ablation of Gata1 in adult mice results in aplastic crisis, revealing its essential role in steady-state and stress erythropoiesis
.
Blood.
2008
;
111
(
8
):
4375
-
4385
.
55.
Fujiwara
Y
,
Browne
CP
,
Cunniff
K
,
Goff
SC
,
Orkin
SH
.
Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1
.
Proc Natl Acad Sci USA.
1996
;
93
(
22
):
12355
-
12358
.
56.
Crispino
JD
,
Horwitz
MS
.
GATA factor mutations in hematologic disease
.
Blood.
2017
;
129
(
15
):
2103
-
2110
.
57.
Abdulhay
NJ
,
Fiorini
C
,
Verboon
JM
, et al
.
Impaired human hematopoiesis due to a cryptic intronic GATA1 splicing mutation
.
J Exp Med.
2019
;
216
(
5
):
1050
-
1060
.
58.
Sankaran
VG
,
Ghazvinian
R
,
Do
R
, et al
.
Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia
.
J Clin Invest.
2012
;
122
(
7
):
2439
-
2443
.
59.
Wagenblast
E
,
Azkanaz
M
,
Smith
SA
, et al
.
Functional profiling of single CRISPR/Cas9-edited human long-term hematopoietic stem cells
.
Nat Commun.
2019
;
10
(
1
):
4730
.
60.
Gillespie
MA
,
Palii
CG
,
Sanchez-Taltavull
D
, et al
.
Absolute quantification of transcription factors reveals principles of gene regulation in erythropoiesis
.
Mol Cell.
2020
;
78
(
5
):
960
-
974.e11
.
61.
Gautier
E-F
,
Ducamp
S
,
Leduc
M
, et al
.
Comprehensive proteomic analysis of human erythropoiesis
.
Cell Rep.
2016
;
16
(
5
):
1470
-
1484
.
62.
Palii
CG
,
Cheng
Q
,
Gillespie
MA
, et al
.
Single-cell proteomics reveal that quantitative changes in co-expressed lineage-specific transcription factors determine cell fate
.
Cell Stem Cell.
2019
;
24
(
5
):
812
-
820.e5
.
63.
Ludwig
LS
,
Lareau
CA
,
Bao
EL
, et al
.
Transcriptional states and chromatin accessibility underlying human erythropoiesis
.
Cell Rep.
2019
;
27
(
11
):
3228
-
3240.e7
.
64.
Suzuki
M
,
Kobayashi-Osaki
M
,
Tsutsumi
S
, et al
.
GATA factor switching from GATA2 to GATA1 contributes to erythroid differentiation
.
Genes Cells.
2013
;
18
(
11
):
921
-
933
.
65.
Huang
J
,
Liu
X
,
Li
D
, et al
.
Dynamic control of enhancer repertoires drives lineage and stage-specific transcription during hematopoiesis
.
Dev Cell.
2016
;
36
(
1
):
9
-
23
.
66.
Gao
Z
,
Huang
Z
,
Olivey
HE
,
Gurbuxani
S
,
Crispino
JD
,
Svensson
EC
.
FOG-1-mediated recruitment of NuRD is required for cell lineage re-enforcement during haematopoiesis
.
EMBO J.
2010
;
29
(
2
):
457
-
468
.
67.
Pal
S
,
Cantor
AB
,
Johnson
KD
, et al
.
Coregulator-dependent facilitation of chromatin occupancy by GATA-1
.
Proc Natl Acad Sci USA.
2004
;
101
(
4
):
980
-
985
.
68.
Fujiwara
T
,
O’Geen
H
,
Keles
S
, et al
.
Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy
.
Mol Cell.
2009
;
36
(
4
):
667
-
681
.
69.
Nuez
B
,
Michalovich
D
,
Bygrave
A
,
Ploemacher
R
,
Grosveld
F
.
Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene
.
Nature.
1995
;
375
(
6529
):
316
-
318
.
70.
Perkins
AC
,
Sharpe
AH
,
Orkin
SH
.
Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF
.
Nature.
1995
;
375
(
6529
):
318
-
322
.
71.
Perkins
A
,
Xu
X
,
Higgs
DR
, et al;
KLF1 Consensus Workgroup
.
Krüppeling erythropoiesis: an unexpected broad spectrum of human red blood cell disorders due to KLF1 variants
.
Blood.
2016
;
127
(
15
):
1856
-
1862
.
72.
Frontelo
P
,
Manwani
D
,
Galdass
M
, et al
.
Novel role for EKLF in megakaryocyte lineage commitment
.
Blood.
2007
;
110
(
12
):
3871
-
3880
.
73.
Bouilloux
F
,
Juban
G
,
Cohet
N
, et al
.
EKLF restricts megakaryocytic differentiation at the benefit of erythrocytic differentiation
.
Blood.
2008
;
112
(
3
):
576
-
584
.
74.
Gnanapragasam
MN
,
McGrath
KE
,
Catherman
S
,
Xue
L
,
Palis
J
,
Bieker
JJ
.
EKLF/KLF1-regulated cell cycle exit is essential for erythroblast enucleation
.
Blood.
2016
;
128
(
12
):
1631
-
1641
.
75.
Arnaud
L
,
Saison
C
,
Helias
V
, et al
.
A dominant mutation in the gene encoding the erythroid transcription factor KLF1 causes a congenital dyserythropoietic anemia
.
Am J Hum Genet.
2010
;
87
(
5
):
721
-
727
.
76.
Borg
J
,
Papadopoulos
P
,
Georgitsi
M
, et al
.
Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin
.
Nat Genet.
2010
;
42
(
9
):
801
-
805
.
77.
Magor
GW
,
Tallack
MR
,
Gillinder
KR
, et al
.
KLF1-null neonates display hydrops fetalis and a deranged erythroid transcriptome
.
Blood.
2015
;
125
(
15
):
2405
-
2417
.
78.
Zhou
D
,
Liu
K
,
Sun
C-W
,
Pawlik
KM
,
Townes
TM
.
KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching
.
Nat Genet.
2010
;
42
(
9
):
742
-
744
.
79.
Porcher
C
,
Chagraoui
H
,
Kristiansen
MS
.
SCL/TAL1: a multifaceted regulator from blood development to disease
.
Blood.
2017
;
129
(
15
):
2051
-
2060
.
80.
Wilkinson
AC
,
Nakauchi
H
,
Göttgens
B
.
Mammalian transcription factor networks: recent advances in interrogating biological complexity
.
Cell Syst.
2017
;
5
(
4
):
319
-
331
.
81.
Ross
J
,
Mavoungou
L
,
Bresnick
EH
,
Milot
E
.
GATA-1 utilizes Ikaros and polycomb repressive complex 2 to suppress Hes1 and to promote erythropoiesis
.
Mol Cell Biol.
2012
;
32
(
18
):
3624
-
3638
.
82.
Mochizuki-Kashio
M
,
Mishima
Y
,
Miyagi
S
, et al
.
Dependency on the polycomb gene Ezh2 distinguishes fetal from adult hematopoietic stem cells
.
Blood.
2011
;
118
(
25
):
6553
-
6561
.
83.
Gregory
GD
,
Miccio
A
,
Bersenev
A
, et al
.
FOG1 requires NuRD to promote hematopoiesis and maintain lineage fidelity within the megakaryocytic-erythroid compartment
.
Blood.
2010
;
115
(
11
):
2156
-
2166
.
84.
Vassen
L
,
Beauchemin
H
,
Lemsaddek
W
,
Krongold
J
,
Trudel
M
,
Möröy
T
.
Growth factor independence 1b (gfi1b) is important for the maturation of erythroid cells and the regulation of embryonic globin expression
.
PLoS One.
2014
;
9
(
5
):
e96636
.
85.
McClellan
D
,
Casey
MJ
,
Bareyan
D
, et al
.
Growth factor independence 1B-mediated transcriptional repression and lineage allocation require lysine-specific demethylase 1-dependent recruitment of the BHC complex
.
Mol Cell Biol.
2019
;
39
(
13
):
e00020
-
e19
.
86.
Sprüssel
A
,
Schulte
JH
,
Weber
S
, et al
.
Lysine-specific demethylase 1 restricts hematopoietic progenitor proliferation and is essential for terminal differentiation
.
Leukemia.
2012
;
26
(
9
):
2039
-
2051
.
87.
Shen
Y
,
Verboon
JM
,
Zhang
Y
, et al
.
A unified model of human hemoglobin switching through single-cell genome editing
.
Nat Commun.
2021
;
12
(
1
):
4991
.
88.
Deng
W
,
Rupon
JW
,
Krivega
I
, et al
.
Reactivation of developmentally silenced globin genes by forced chromatin looping
.
Cell.
2014
;
158
(
4
):
849
-
860
.
89.
Zhang
H
,
Lam
J
,
Zhang
D
, et al
.
CTCF and transcription influence chromatin structure re-configuration after mitosis
.
Nat Commun.
2021
;
12
(
1
):
5157
.
90.
Tallack
MR
,
Whitington
T
,
Yuen
WS
, et al
.
A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells
.
Genome Res.
2010
;
20
(
8
):
1052
-
1063
.
91.
Cheng
Y
,
Wu
W
,
Kumar
SA
, et al
.
Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression
.
Genome Res.
2009
;
19
(
12
):
2172
-
2184
.
92.
Xu
J
,
Shao
Z
,
Glass
K
, et al
.
Combinatorial assembly of developmental stage-specific enhancers controls gene expression programs during human erythropoiesis
.
Dev Cell.
2012
;
23
(
4
):
796
-
811
.
93.
Huang
J
,
Li
K
,
Cai
W
, et al
.
Dissecting super-enhancer hierarchy based on chromatin interactions
.
Nat Commun.
2018
;
9
(
1
):
943
.
94.
Wong
P
,
Hattangadi
SM
,
Cheng
AW
,
Frampton
GM
,
Young
RA
,
Lodish
HF
.
Gene induction and repression during terminal erythropoiesis are mediated by distinct epigenetic changes
.
Blood.
2011
;
118
(
16
):
e128
-
e138
.
95.
Xiang
G
,
Keller
CA
,
Heuston
E
, et al
.
An integrative view of the regulatory and transcriptional landscapes in mouse hematopoiesis
.
Genome Res.
2020
;
30
(
3
):
472
-
484
.
96.
Shema
E
,
Bernstein
BE
,
Buenrostro
JD
.
Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution
.
Nat Genet.
2019
;
51
(
1
):
19
-
25
.
97.
Hua
P
,
Badat
M
,
Hanssen
LLP
, et al
.
Defining genome architecture at base-pair resolution
.
Nature.
2021
;
595
(
7865
):
125
-
129
.
98.
Gasperini
M
,
Tome
JM
,
Shendure
J
.
Towards a comprehensive catalogue of validated and target-linked human enhancers
.
Nat Rev Genet.
2020
;
21
(
5
):
292
-
310
.
99.
Oudelaar
AM
,
Beagrie
RA
,
Kassouf
MT
,
Higgs
DR
.
The mouse alpha-globin cluster: a paradigm for studying genome regulation and organization
.
Curr Opin Genet Dev.
2021
;
67
:
18
-
24
.
100.
Lu
Y-C
,
Sanada
C
,
Xavier-Ferrucio
J
, et al
.
The molecular signature of megakaryocyte-erythroid progenitors reveals a role for the cell cycle in fate specification [published correction appears in Cell Rep. 2018;25(11):3229]
.
Cell Rep.
2018
;
25
(
8
):
2083
-
2093.e4
.
101.
Hwang
Y
,
Futran
M
,
Hidalgo
D
, et al
.
Global increase in replication fork speed during a p57KIP2-regulated erythroid cell fate switch
.
Sci Adv.
2017
;
3
(
5
):
e1700298
.
102.
Pop
R
,
Shearstone
JR
,
Shen
Q
, et al
.
A key commitment step in erythropoiesis is synchronized with the cell cycle clock through mutual inhibition between PU.1 and S-phase progression
.
PLoS Biol.
2010
;
8
(
9
):
e1000484
.
103.
Clark
AJ
,
Doyle
KM
,
Humbert
PO
.
Cell-intrinsic requirement for pRb in erythropoiesis
.
Blood.
2004
;
104
(
5
):
1324
-
1326
.
104.
Kinross
KM
,
Clark
AJ
,
Iazzolino
RM
,
Humbert
PO
.
E2f4 regulates fetal erythropoiesis through the promotion of cellular proliferation
.
Blood.
2006
;
108
(
3
):
886
-
895
.
105.
Sankaran
VG
,
Orkin
SH
,
Walkley
CR
.
Rb intrinsically promotes erythropoiesis by coupling cell cycle exit with mitochondrial biogenesis
.
Genes Dev.
2008
;
22
(
4
):
463
-
475
.
106.
Hsieh
FF
,
Barnett
LA
,
Green
WF
, et al
.
Cell cycle exit during terminal erythroid differentiation is associated with accumulation of p27(Kip1) and inactivation of cdk2 kinase
.
Blood.
2000
;
96
(
8
):
2746
-
2754
.
107.
Hershko
A
,
Ciechanover
A
,
Varshavsky
A
.
Basic Medical Research Award. The ubiquitin system
.
Nat Med.
2000
;
6
(
10
):
1073
-
1081
.
108.
Lodish
HF
.
Model for the regulation of mRNA translation applied to haemoglobin synthesis
.
Nature.
1974
;
251
(
5474
):
385
-
388
.
109.
Magee
JA
,
Signer
RAJ
.
Developmental stage-specific changes in protein synthesis differentially sensitize hematopoietic stem cells and erythroid progenitors to impaired ribosome biogenesis
.
Stem Cell Reports.
2021
;
16
(
1
):
20
-
28
.
110.
Khajuria
RK
,
Munschauer
M
,
Ulirsch
JC
, et al
.
Ribosome levels selectively regulate translation and lineage commitment in human hematopoiesis
.
Cell.
2018
;
173
(
1
):
90
-
103.e19
.
111.
Saba
JA
,
Liakath-Ali
K
,
Green
R
,
Watt
FM
.
Translational control of stem cell function
.
Nat Rev Mol Cell Biol.
2021
;
22
(
10
):
671
-
690
.
112.
Ulirsch
JC
,
Verboon
JM
,
Kazerounian
S
, et al
.
The genetic landscape of Diamond-Blackfan anemia [published correction appears in Am J Hum Genet. 2019;104(2):356]
.
Am J Hum Genet.
2018
;
103
(
6
):
930
-
947
.
113.
Chen
J-J
,
Zhang
S
.
Heme-regulated eIF2α kinase in erythropoiesis and hemoglobinopathies
.
Blood.
2019
;
134
(
20
):
1697
-
1707
.
114.
Zhang
S
,
Macias-Garcia
A
,
Ulirsch
JC
, et al
.
HRI coordinates translation necessary for protein homeostasis and mitochondrial function in erythropoiesis
.
Elife.
2019
;
8
:
e46976
.
115.
Karayel
Ö
,
Xu
P
,
Bludau
I
, et al
.
Integrative proteomics reveals principles of dynamic phosphosignaling networks in human erythropoiesis
.
Mol Syst Biol.
2020
;
16
(
12
):
e9813
.
116.
Ribeil
J-A
,
Zermati
Y
,
Vandekerckhove
J
, et al
.
Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1
.
Nature.
2007
;
445
(
7123
):
102
-
105
.
117.
Weiss
MJ
,
dos Santos
CO
.
Chaperoning erythropoiesis
.
Blood.
2009
;
113
(
10
):
2136
-
2144
.
118.
Xu
P
,
Scott
DC
,
Xu
B
, et al
.
FBXO11-mediated proteolysis of BAHD1 relieves PRC2-dependent transcriptional repression in erythropoiesis
.
Blood.
2021
;
137
(
2
):
155
-
167
.
119.
Ingolia
NT
,
Hussmann
JA
,
Weissman
JS
.
Ribosome profiling: global views of translation
.
Cold Spring Harb Perspect Biol.
2019
;
11
(
5
):
a032698
.
120.
Larance
M
,
Lamond
AI
.
Multidimensional proteomics for cell biology
.
Nat Rev Mol Cell Biol.
2015
;
16
(
5
):
269
-
280
.
121.
Liang
R
,
Campreciós
G
,
Kou
Y
, et al
.
A systems approach identifies essential FOXO3 functions at key steps of terminal erythropoiesis
.
PLoS Genet.
2015
;
11
(
10
):
e1005526
.
122.
Bao
EL
,
Cheng
AN
,
Sankaran
VG
.
The genetics of human hematopoiesis and its disruption in disease
.
EMBO Mol Med.
2019
;
11
(
8
):
e10316
.
123.
Vuckovic
D
,
Bao
EL
,
Akbari
P
, et al;
VA Million Veteran Program
.
The polygenic and monogenic basis of blood traits and diseases
.
Cell.
2020
;
182
(
5
):
1214
-
1231.e11
.
124.
Ulirsch
JC
,
Nandakumar
SK
,
Wang
L
, et al
.
Systematic functional dissection of common genetic variation affecting red blood cell traits
.
Cell.
2016
;
165
(
6
):
1530
-
1545
.
125.
van der Harst
P
,
Zhang
W
,
Mateo Leach
I
, et al
.
Seventy-five genetic loci influencing the human red blood cell
.
Nature.
2012
;
492
(
7429
):
369
-
375
.
126.
Ulirsch
JC
,
Lareau
CA
,
Bao
EL
, et al
.
Interrogation of human hematopoiesis at single-cell and single-variant resolution
.
Nat Genet.
2019
;
51
(
4
):
683
-
693
.
127.
Esrick
EB
,
Lehmann
LE
,
Biffi
A
, et al
.
Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease
.
N Engl J Med.
2021
;
384
(
3
):
205
-
215
.
128.
Frangoul
H
,
Altshuler
D
,
Cappellini
MD
, et al
.
CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia
.
N Engl J Med.
2021
;
384
(
3
):
252
-
260
.
129.
Sankaran
VG
,
Menne
TF
,
Xu
J
, et al
.
Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A
.
Science.
2008
;
322
(
5909
):
1839
-
1842
.
130.
Basak
A
,
Hancarova
M
,
Ulirsch
JC
, et al
.
BCL11A deletions result in fetal hemoglobin persistence and neurodevelopmental alterations
.
J Clin Invest.
2015
;
125
(
6
):
2363
-
2368
.
131.
Funnell
APW
,
Prontera
P
,
Ottaviani
V
, et al
.
2p15-p16.1 microdeletions encompassing and proximal to BCL11A are associated with elevated HbF in addition to neurologic impairment
.
Blood.
2015
;
126
(
1
):
89
-
93
.
132.
Dias
C
,
Estruch
SB
,
Graham
SA
, et al;
DDD Study
.
BCL11A haploinsufficiency causes an intellectual disability syndrome and dysregulates transcription
.
Am J Hum Genet.
2016
;
99
(
2
):
253
-
274
.
133.
Shen
Y
,
Li
R
,
Teichert
K
, et al
.
Pathogenic BCL11A variants provide insights into the mechanisms of human fetal hemoglobin silencing
.
PLoS Genet.
2021
;
17
(
10
):
e1009835
.
134.
Bauer
DE
,
Kamran
SC
,
Lessard
S
, et al
.
An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level
.
Science.
2013
;
342
(
6155
):
253
-
257
.
135.
Canver
MC
,
Smith
EC
,
Sher
F
, et al
.
BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis
.
Nature.
2015
;
527
(
7577
):
192
-
197
.
136.
Walters
MC
.
Induction of fetal hemoglobin by gene therapy
.
N Engl J Med.
2021
;
384
(
3
):
284
-
285
.
137.
Orkin
SH
.
Molecular medicine: found in translation
.
Med (N Y).
2021
;
2
(
2
):
122
-
136
.
138.
Liu
N
,
Hargreaves
VV
,
Zhu
Q
, et al
.
Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch
.
Cell.
2018
;
173
(
2
):
430
-
442.e17
.
139.
Martyn
GE
,
Wienert
B
,
Yang
L
, et al
.
Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding
.
Nat Genet.
2018
;
50
(
4
):
498
-
503
.
140.
Basak
A
,
Munschauer
M
,
Lareau
CA
, et al
.
Control of human hemoglobin switching by LIN28B-mediated regulation of BCL11A translation
.
Nat Genet.
2020
;
52
(
2
):
138
-
145
.
141.
VanInsberghe
M
,
van den Berg
J
,
Andersson-Rolf
A
,
Clevers
H
,
van Oudenaarden
A
.
Single-cell Ribo-seq reveals cell cycle-dependent translational pausing
.
Nature.
2021
;
597
(
7877
):
561
-
565
.
142.
Pellin
D
,
Loperfido
M
,
Baricordi
C
, et al
.
A comprehensive single cell transcriptional landscape of human hematopoietic progenitors
.
Nat Commun.
2019
;
10
(
1
):
2395
.
143.
Jaiswal
S
,
Ebert
BL
.
Clonal hematopoiesis in human aging and disease
.
Science.
2019
;
366
(
6465
):
eaan4673
.
144.
Ludwig
LS
,
Lareau
CA
,
Ulirsch
JC
, et al
.
Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics
.
Cell.
2019
;
176
(
6
):
1325
-
1339.e22
.
145.
Lee-Six
H
,
Øbro
NF
,
Shepherd
MS
, et al
.
Population dynamics of normal human blood inferred from somatic mutations
.
Nature.
2018
;
561
(
7724
):
473
-
478
.
146.
Liggett
LA
,
Cato
LD
,
Weinstock
JS
, et al
.
Clonal hematopoiesis in sickle cell  disease
. J Clin Investig.
2022
.
You do not currently have access to this content.

Sign in via your Institution