Key Points

  • Combinatorial genome editing of hematopoietic progenitors shows the importance of mutational cooperativity in specifying leukemia lineage.

  • Combinatorial patterns of mutations are associated with drug sensitivity in preclinical models of erythroleukemia.

Abstract

Acute erythroid leukemia (AEL) is characterized by a distinct morphology, mutational spectrum, lack of preclinical models, and poor prognosis. Here, using multiplexed genome editing of mouse hematopoietic stem and progenitor cells and transplant assays, we developed preclinical models of AEL and non-erythroid acute leukemia and describe the central role of mutational cooperativity in determining leukemia lineage. Different combination of mutations in Trp53, Bcor, Dnmt3a, Rb1, and Nfix resulted in the development of leukemia with an erythroid phenotype, accompanied by the acquisition of alterations in signaling and transcription factor genes that recapitulate human AEL by cross-species genomic analysis. Clonal expansion during tumor evolution was driven by mutational cooccurrence, with clones harboring a higher number of founder and secondary lesions (eg, mutations in signaling genes) showing greater evolutionary fitness. Mouse and human AEL exhibited deregulation of genes regulating erythroid development, notably Gata1, Klf1, and Nfe2, driven by the interaction of mutations of the epigenetic modifiers Dnmt3a and Tet2 that perturbed methylation and thus expression of lineage-specific transcription factors. The established mouse leukemias were used as a platform for drug screening. Drug sensitivity was associated with the leukemia genotype, with the poly (ADP-ribose) polymerase inhibitor talazoparib and the demethylating agent decitabine efficacious in Trp53/Bcor–mutant AEL, CDK7/9 inhibitors in Trp53/Bcor/Dnmt3a–mutant AEL, and gemcitabine and bromodomain inhibitors in NUP98-KDM5A leukemia. In conclusion, combinatorial genome editing has shown the interplay of founding and secondary genetic alterations in phenotype and clonal evolution, epigenetic regulation of lineage-specific transcription factors, and therapeutic tractability in erythroid leukemogenesis.

REFERENCES

REFERENCES
1.
Santos
FP
,
Bueso-Ramos
CE
,
Ravandi
F
.
Acute erythroleukemia: diagnosis and management
.
Expert Rev Hematol
.
2010
;
3
(
6
):
705
-
718
.
2.
Liu
W
,
Hasserjian
RP
,
Hu
Y
, et al
.
Pure erythroid leukemia: a reassessment of the entity using the 2008 World Health Organization classification
.
Mod Pathol
.
2011
;
24
(
3
):
375
-
383
.
3.
Grossmann
V
,
Bacher
U
,
Haferlach
C
, et al
.
Acute erythroid leukemia (AEL) can be separated into distinct prognostic subsets based on cytogenetic and molecular genetic characteristics
.
Leukemia
.
2013
;
27
(
9
):
1940
-
1943
.
4.
Arber
DA
,
Orazi
A
,
Hasserjian
R
, et al
.
The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia
.
Blood
.
2016
;
127
(
20
):
2391
-
2405
.
5.
Radke
K
,
Beug
H
,
Kornfeld
S
,
Graf
T
.
Transformation of both erythroid and myeloid cells by E26, an avian leukemia virus that contains the myb gene
.
Cell
.
1982
;
31
(
3 pt 2
):
643
-
653
.
6.
Moreau-Gachelin
F
,
Tavitian
A
,
Tambourin
P
.
Spi-1 is a putative oncogene in virally induced murine erythroleukaemias
.
Nature
.
1988
;
331
(
6153
):
277
-
280
.
7.
Moreau-Gachelin
F
,
Wendling
F
,
Molina
T
, et al
.
Spi-1/PU.1 transgenic mice develop multistep erythroleukemias
.
Mol Cell Biol
.
1996
;
16
(
5
):
2453
-
2463
.
8.
Fagnan
A
,
Bagger
FO
,
Piqué-Borràs
MR
, et al
.
Human erythroleukemia genetics and transcriptomes identify master transcription factors as functional disease drivers
.
Blood
.
2020
;
136
(
6
):
698
-
714
.
9.
Sportoletti
P
,
Sorcini
D
,
Guzman
AG
, et al
.
Bcor deficiency perturbs erythro-megakaryopoiesis and cooperates with Dnmt3a loss in acute erythroid leukemia onset in mice [published online ahead of print 6 November 2020]
.
Leukemia
.
doi: 10.1038/s41375-020-01075-3
.
10.
Iacobucci
I
,
Wen
J
,
Meggendorfer
M
, et al
.
Genomic subtyping and therapeutic targeting of acute erythroleukemia
.
Nat Genet
.
2019
;
51
(
4
):
694
-
704
.
11.
Aran
D
,
Hu
Z
,
Butte
AJ
.
xCell: digitally portraying the tissue cellular heterogeneity landscape
.
Genome Biol
.
2017
;
18
(
1
):
220
.
12.
Jaiswal
S
,
Ebert
BL
.
Clonal hematopoiesis in human aging and disease
.
Science
.
2019
;
366
(
6465
):
eaan4673
.
13.
Mondal
G
,
Stevers
M
,
Goode
B
,
Ashworth
A
,
Solomon
DA
.
A requirement for STAG2 in replication fork progression creates a targetable synthetic lethality in cohesin-mutant cancers
.
Nat Commun
.
2019
;
10
(
1
):
1686
.
14.
Schnittger
S
,
Kohl
TM
,
Haferlach
T
, et al
.
KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival
.
Blood
.
2006
;
107
(
5
):
1791
-
1799
.
15.
Wang
Z
,
Gearhart
MD
,
Lee
YW
, et al
.
A non-canonical BCOR-PRC1.1 complex represses differentiation programs in human ESCs
.
Cell Stem Cell
.
2018
;
22
(
2
):
235
-
251.e9
.
16.
Du
X
,
Wen
J
,
Wang
Y
, et al
.
Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells
.
Nature
.
2018
;
558
(
7708
):
141
-
145
.
17.
Kelly
MJ
,
So
J
,
Rogers
AJ
, et al
.
Bcor loss perturbs myeloid differentiation and promotes leukaemogenesis
.
Nat Commun
.
2019
;
10
(
1
):
1347
.
18.
Gu
Z
,
Churchman
ML
,
Roberts
KG
, et al
.
PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia
.
Nat Genet
.
2019
;
51
(
2
):
296
-
307
.
19.
Liu
Y
,
Easton
J
,
Shao
Y
, et al
.
The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia
.
Nat Genet
.
2017
;
49
(
8
):
1211
-
1218
.
20.
Challen
GA
,
Sun
D
,
Jeong
M
, et al
.
Dnmt3a is essential for hematopoietic stem cell differentiation
.
Nat Genet
.
2011
;
44
(
1
):
23
-
31
.
21.
Zhang
X
,
Su
J
,
Jeong
M
, et al
.
DNMT3A and TET2 compete and cooperate to repress lineage-specific transcription factors in hematopoietic stem cells
.
Nat Genet
.
2016
;
48
(
9
):
1014
-
1023
.
22.
Visel
A
,
Blow
MJ
,
Li
Z
, et al
.
ChIP-seq accurately predicts tissue-specific activity of enhancers
.
Nature
.
2009
;
457
(
7231
):
854
-
858
.
23.
Margueron
R
,
Reinberg
D
.
The Polycomb complex PRC2 and its mark in life
.
Nature
.
2011
;
469
(
7330
):
343
-
349
.
24.
Ma
X
,
Kang
S
.
Functional implications of DNA methylation in adipose biology
.
Diabetes
.
2019
;
68
(
5
):
871
-
878
.
25.
Drenberg
CD
,
Shelat
A
,
Dang
J
, et al
.
A high-throughput screen indicates gemcitabine and JAK inhibitors may be useful for treating pediatric AML
.
Nat Commun
.
2019
;
10
(
1
):
2189
.
26.
Litton
JK
,
Rugo
HS
,
Ettl
J
, et al
.
Talazoparib in patients with advanced breast cancer and a germline BRCA mutation
.
N Engl J Med
.
2018
;
379
(
8
):
753
-
763
.
27.
Welch
JS
,
Petti
AA
,
Miller
CA
, et al
.
TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes
.
N Engl J Med
.
2016
;
375
(
21
):
2023
-
2036
.
28.
Muvarak
NE
,
Chowdhury
K
,
Xia
L
, et al
.
Enhancing the cytotoxic effects of PARP inhibitors with DNA demethylating agents—a potential therapy for cancer
.
Cancer Cell
.
2016
;
30
(
4
):
637
-
650
.
29.
Leung
GMK
,
Zhang
C
,
Ng
NKL
, et al
.
Distinct mutation spectrum, clinical outcome and therapeutic responses of typical complex/monosomy karyotype acute myeloid leukemia carrying TP53 mutations
.
Am J Hematol
.
2019
;
94
(
6
):
650
-
657
.
30.
Izzo
F
,
Lee
SC
,
Poran
A
, et al
.
DNA methylation disruption reshapes the hematopoietic differentiation landscape
.
Nat Genet
.
2020
;
52
(
4
):
378
-
387
.
31.
Genovese
G
,
Kähler
AK
,
Handsaker
RE
, et al
.
Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence
.
N Engl J Med
.
2014
;
371
(
26
):
2477
-
2487
.
32.
Jaiswal
S
,
Fontanillas
P
,
Flannick
J
, et al
.
Age-related clonal hematopoiesis associated with adverse outcomes
.
N Engl J Med
.
2014
;
371
(
26
):
2488
-
2498
.
33.
Boettcher
S
,
Ebert
BL
.
Clonal hematopoiesis of indeterminate potential
.
J Clin Oncol
.
2019
;
37
(
5
):
419
-
422
.
34.
Tothova
Z
,
Krill-Burger
JM
,
Popova
KD
, et al
.
Multiplex CRISPR/Cas9-based genome editing in human hematopoietic stem cells models clonal hematopoiesis and myeloid neoplasia
.
Cell Stem Cell
.
2017
;
21
(
4
):
547
-
555.e8
.
35.
Choe
S
,
Wang
H
,
DiNardo
CD
, et al
.
Molecular mechanisms mediating relapse following ivosidenib monotherapy in IDH1-mutant relapsed or refractory AML
.
Blood Adv
.
2020
;
4
(
9
):
1894
-
1905
.
36.
McMahon
CM
,
Ferng
T
,
Canaani
J
, et al
.
Clonal selection with RAS pathway activation mediates secondary clinical resistance to selective FLT3 inhibition in acute myeloid leukemia
.
Cancer Discov
.
2019
;
9
(
8
):
1050
-
1063
.
37.
Bacon
CW
,
D’Orso
I
.
CDK9: a signaling hub for transcriptional control
.
Transcription
.
2019
;
10
(
2
):
57
-
75
.
38.
Boffo
S
,
Damato
A
,
Alfano
L
,
Giordano
A
.
CDK9 inhibitors in acute myeloid leukemia
.
J Exp Clin Cancer Res
.
2018
;
37
(
1
):
36
.
You do not currently have access to this content.

Sign in via your Institution

Sign In