Key Points

  • CRISPR- modified CD38KO ex vivo expanded primary NK cell shows enhanced daratumumab-mediated cytotoxic effect against multiple myeloma.

  • CD38KO NK cells have increased oxidative metabolism

Multiple myeloma (MM) is a plasma cell neoplasm that commonly expresses CD38. Daratumumab (DARA), a human monoclonal antibody targeting CD38, has significantly improved the outcome of patients with relapsed and refractory MM, but the response is transient in most cases. Putative mechanisms of suboptimal efficacy of DARA include down-regulation of CD38 expression and over-expression of complement inhibitory proteins on MM target cells as well as DARA-induced depletion of CD38high natural killer (NK) cells resulting in crippled antibody dependent cellular cytotoxicity (ADCC). Here, we tested if maintaining NK-cell function during DARA therapy could maximize DARA-mediated ADCC against MM cells and deepen the response. We used the CRISPR/Cas9 system to delete CD38 (CD38KO) in ex vivo expanded peripheral blood NK cells. These CD38KO NK cells were completely resistant to DARA-induced fratricide, showed superior persistence in immune deficient mice pretreated with DARA, and enhanced ADCC activity against CD38-expressing MM cell lines and primary MM cells. Additionally, transcriptomic and cellular metabolic analysis demonstrated that CD38KO NK cells have unique metabolic reprogramming with higher mitochondrial respiratory capacity. Lastly, we evaluate the impact of exposure to all-trans retinoic acid (ATRA) on wild type NK and CD38KO NK cells function and highlight potential benefit and drawbacks of combining ATRA with DARA in patients with MM. Taken together, these findings provide proof of concept that adoptive immunotherapy using ex vivo expanded CD38KO NK cells has the potential to boost DARA activity in MM.

This content is only available as a PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.