Key Points

  • RA-responsive mononuclear cells are increased in IL-23-rich human GI-GvHD tissue and are associated with poor outcome

  • These cells have a GI-tropic IL-23R+ CD8 effector T-cellphenotype and are generated by allostimulation in RA and IL-23-rich conditions

Gastrointestinal (GI) graft-versus-host disease (GvHD) is a major barrier in allogeneic hematopoietic stem-cell transplantation (AHST). The metabolite retinoic acid (RA) potentiates GI-GvHD in mice via alloreactive T-cells expressing the RA-receptor-alpha (RARα), but the role of RA-responsive cells in human GI-GvHD remains undefined. We therefore used conventional and novel sequential immunostaining and flow cytometry to scrutinize RA-responsive T-cells in tissues and blood of AHST patients and characterize the impact of RA on human T-cell alloresponses. Expression of RARα by human mononuclear cells was increased after RA exposure. RARαhi mononuclear cells were increased in GI-GvHD tissue, contained more cellular RA-binding proteins, localized with tissue damage and correlated with GvHD severity and mortality. Using a targeted candidate protein approach we predicted the phenotype of RA-responsive T-cells in the context of increased microenvironmental IL-23. Sequential immunostaining confirmed the presence of a population of RARahi CD8 T-cells with the predicted phenotype, co-expressing the effector T-cell transcription factor T-bet and the IL-23-specific receptor. These cells were increased in GI- but not skin-GvHD tissues and were also selectively expanded in GI-GvHD patient blood. Finally, functional approaches demonstrated RA predominantly increased alloreactive GI-tropic RARahi CD8 effector T-cells, including cells with the phenotype identified in vivo. IL-23-rich conditions potentiated this effect by selectively increasing b7 integrin expression on CD8 effector T-cells and reducing CD4 T-cells with a regulatory cell phenotype. In conclusion we have identified a population of RA-responsive effector T-cells with a distinctive phenotype which are selectively expanded in human GI-GvHD and represent a potential new therapeutic target.

This content is only available as a PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.