Key Points

  • PF4 improves outcome in sepsis by stabilizing NETs and enhancing NET-mediated microbial entrapment.

  • An Fc-modified HIT-like antibody further enhances the beneficial effects of PF4 in sepsis.

Abstract

Sepsis is characterized by multiorgan system dysfunction that occurs because of infection. It is associated with high morbidity and mortality and is in need of improved therapeutic interventions. Neutrophils play a crucial role in sepsis, releasing neutrophil extracellular traps (NETs) composed of DNA complexed with histones and toxic antimicrobial proteins that ensnare pathogens, but also damage host tissues. At presentation, patients often have a significant NET burden contributing to the multiorgan damage. Therefore, interventions that inhibit NET release would likely be ineffective at preventing NET-based injury. Treatments that enhance NET degradation may liberate captured bacteria and toxic NET degradation products (NDPs) and likely be of limited therapeutic benefit as well. We propose that interventions that stabilize NETs and sequester NDPs may be protective in sepsis. We showed that platelet factor 4 (PF4), a platelet-associated chemokine, binds and compacts NETs, increasing their resistance to DNase I. We now show that PF4 increases NET-mediated bacterial capture, reduces the release of NDPs, and improves outcome in murine models of sepsis. A monoclonal antibody KKO which binds to PF4-NET complexes, further enhances DNase resistance. However, the Fc portion of this antibody activates the immune response and increases thrombotic risk, negating any protective effects in sepsis. Therefore, we developed an Fc-modified KKO that does not induce these negative outcomes. Treatment with this antibody augmented the effects of PF4, decreasing NDP release and bacterial dissemination and increasing survival in murine sepsis models, supporting a novel NET-targeting approach to improve outcomes in sepsis.

REFERENCES

REFERENCES
1.
Angus
DC
,
Linde-Zwirble
WT
,
Lidicker
J
,
Clermont
G
,
Carcillo
J
,
Pinsky
MR
.
Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care
.
Crit Care Med
.
2001
;
29
(
7
):
1303
-
1310
.
2.
Mayr
FB
,
Yende
S
,
Angus
DC
.
Epidemiology of severe sepsis
.
Virulence
.
2014
;
5
(
1
):
4
-
11
.
3.
Coopersmith
CM
,
De Backer
D
,
Deutschman
CS
, et al
.
Surviving sepsis campaign: research priorities for sepsis and septic shock
.
Intensive Care Med
.
2018
;
44
(
9
):
1400
-
1426
.
4.
Jackson
SP
,
Darbousset
R
,
Schoenwaelder
SM
.
Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms
.
Blood
.
2019
;
133
(
9
):
906
-
918
.
5.
Gyawali
B
,
Ramakrishna
K
,
Dhamoon
AS
.
Sepsis: the evolution in definition, pathophysiology, and management
.
SAGE Open Med
.
2019
;
7
:
2050312119835043
.
6.
Coopersmith
CM
,
De Backer
D
,
Deutschman
CS
, et al
.
Surviving Sepsis Campaign: research priorities for sepsis and septic shock
.
Crit Care Med
.
2018
;
46
(
8
):
1334
-
1356
.
7.
Delano
MJ
,
Ward
PA
.
Sepsis-induced immune dysfunction: can immune therapies reduce mortality?
J Clin Invest
.
2016
;
126
(
1
):
23
-
31
.
8.
Kubes
P
.
The enigmatic neutrophil: what we do not know
.
Cell Tissue Res
.
2018
;
371
(
3
):
399
-
406
.
9.
McDonald
B
,
Urrutia
R
,
Yipp
BG
,
Jenne
CN
,
Kubes
P
.
Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis
.
Cell Host Microbe
.
2012
;
12
(
3
):
324
-
333
.
10.
Schauer
C
,
Janko
C
,
Munoz
LE
, et al
.
Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines
.
Nat Med
.
2014
;
20
(
5
):
511
-
517
.
11.
Mahajan
A
,
Grüneboom
A
,
Petru
L
, et al
.
Frontline science: aggregated neutrophil extracellular traps prevent inflammation on the neutrophil-rich ocular surface
.
J Leukoc Biol
.
2019
;
105
(
6
):
1087
-
1098
.
12.
Jiménez-Alcázar
M
,
Rangaswamy
C
,
Panda
R
, et al
.
Host DNases prevent vascular occlusion by neutrophil extracellular traps
.
Science
.
2017
;
358
(
6367
):
1202
-
1206
.
13.
Bhagirath
VC
,
Dwivedi
DJ
,
Liaw
PC
.
Comparison of the proinflammatory and procoagulant properties of nuclear, mitochondrial, and bacterial DNA
.
Shock
.
2015
;
44
(
3
):
265
-
271
.
14.
Leffler
J
,
Martin
M
,
Gullstrand
B
, et al
.
Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease
.
J Immunol
.
2012
;
188
(
7
):
3522
-
3531
.
15.
Tian
R
,
Ding
Y
,
Peng
YY
,
Lu
N
.
Inhibition of myeloperoxidase- and neutrophil-mediated hypochlorous acid formation in vitro and endothelial cell injury by (-)-epigallocatechin gallate
.
J Agric Food Chem
.
2017
;
65
(
15
):
3198
-
3203
.
16.
Massberg
S
,
Grahl
L
,
von Bruehl
ML
, et al
.
Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases
.
Nat Med
.
2010
;
16
(
8
):
887
-
896
.
17.
Esmon
CT
.
Extracellular histones zap platelets
.
Blood
.
2011
;
118
(
13
):
3456
-
3457
.
18.
Xu
J
,
Zhang
X
,
Pelayo
R
, et al
.
Extracellular histones are major mediators of death in sepsis
.
Nat Med
.
2009
;
15
(
11
):
1318
-
1321
.
19.
Maruchi
Y
,
Tsuda
M
,
Mori
H
, et al
.
Plasma myeloperoxidase-conjugated DNA level predicts outcomes and organ dysfunction in patients with septic shock
.
Crit Care
.
2018
;
22
(
1
):
176
.
20.
Colón
DF
,
Wanderley
CW
,
Franchin
M
, et al
.
Neutrophil extracellular traps (NETs) exacerbate severity of infant sepsis
.
Crit Care
.
2019
;
23
(
1
):
113
.
21.
Martinod
K
,
Fuchs
TA
,
Zitomersky
NL
, et al
.
PAD4-deficiency does not affect bacteremia in polymicrobial sepsis and ameliorates endotoxemic shock
.
Blood
.
2015
;
125
(
12
):
1948
-
1956
.
22.
McDonald
B
,
Davis
RP
,
Kim
SJ
, et al
.
Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice
.
Blood
.
2017
;
129
(
10
):
1357
-
1367
.
23.
O’Brien
XM
,
Biron
BM
,
Reichner
JS
.
Consequences of extracellular trap formation in sepsis
.
Curr Opin Hematol
.
2017
;
24
(
1
):
66
-
71
.
24.
Mai
SH
,
Khan
M
,
Dwivedi
DJ
, et al;
Canadian Critical Care Translational Biology Group
.
Delayed but not early treatment with dnase reduces organ damage and improves outcome in a murine model of sepsis
.
Shock
.
2015
;
44
(
2
):
166
-
172
.
25.
Hurley
JC
.
Antibiotic-induced release of endotoxin. A therapeutic paradox
.
Drug Saf
.
1995
;
12
(
3
):
183
-
195
.
26.
Eslin
DE
,
Zhang
C
,
Samuels
KJ
, et al
.
Transgenic mice studies demonstrate a role for platelet factor 4 in thrombosis: dissociation between anticoagulant and antithrombotic effect of heparin
.
Blood
.
2004
;
104
(
10
):
3173
-
3180
.
27.
Cines
DB
,
Rauova
L
,
Arepally
G
, et al
.
Heparin-induced thrombocytopenia: an autoimmune disorder regulated through dynamic autoantigen assembly/disassembly
.
J Clin Apher
.
2007
;
22
(
1
):
31
-
36
.
28.
Lande
R
,
Lee
EY
,
Palazzo
R
, et al
.
CXCL4 assembles DNA into liquid crystalline complexes to amplify TLR9-mediated interferon-α production in systemic sclerosis
.
Nat Commun
.
2019
;
10
(
1
):
1731
.
29.
Gollomp
K
,
Kim
M
,
Johnston
I
, et al
.
Neutrophil accumulation and NET release contribute to thrombosis in HIT
.
JCI Insight
.
2018
;
3
(
18
):
99445
.
30.
Kowalska
MA
,
Mahmud
SA
,
Lambert
MP
,
Poncz
M
,
Slungaard
A
.
Endogenous platelet factor 4 stimulates activated protein C generation in vivo and improves survival after thrombin or lipopolysaccharide challenge
.
Blood
.
2007
;
110
(
6
):
1903
-
1905
.
31.
Arepally
GM
,
Kamei
S
,
Park
KS
, et al
.
Characterization of a murine monoclonal antibody that mimics heparin-induced thrombocytopenia antibodies
.
Blood
.
2000
;
95
(
5
):
1533
-
1540
.
32.
Efron
PA
,
Mohr
AM
,
Moore
FA
,
Moldawer
LL
.
The future of murine sepsis and trauma research models
.
J Leukoc Biol
.
2015
;
98
(
6
):
945
-
952
.
33.
Sjogren
J
,
Cosgrave
EF
,
Allhorn
M
, et al
.
EndoS and EndoS2 hydrolyze Fc-glycans on therapeutic antibodies with different glycoform selectivity and can be used for rapid quantifification of high-mannose glycans
.
Glycobiology
.
2015
;
25
(
10
):
1053
-
1063
.
34.
Huang
LJ
,
Lin
JH
,
Tsai
JH
, et al
.
Identifification of protein O-glycosylation site and corresponding glycans using liquid chromatography-tandem mass spectrometry via mapping accurate mass and retention time shift
.
J Chromatogr A
.
2014
;
1371
:
136
-
145
.
35.
Rauova
L
,
Zhai
L
,
Kowalska
MA
,
Arepally
GM
,
Cines
DB
,
Poncz
M
.
Role of platelet surface PF4 antigenic complexes in heparin-induced thrombocytopenia pathogenesis: diagnostic and therapeutic implications
.
Blood
.
2006
;
107
(
6
):
2346
-
2353
.
36.
Hayes
V
,
Johnston
I
,
Arepally
GM
, et al
.
Endothelial antigen assembly leads to thrombotic complications in heparin-induced thrombocytopenia
.
J Clin Invest
.
2017
;
127
(
3
):
1090
-
1098
.
37.
Tutwiler
V
,
Madeeva
D
,
Ahn
HS
, et al
.
Platelet transactivation by monocytes promotes thrombosis in heparin-induced thrombocytopenia
.
Blood
.
2016
;
127
(
4
):
464
-
472
.
38.
Reilly
MP
,
Taylor
SM
,
Hartman
NK
, et al
.
Heparin-induced thrombocytopenia/thrombosis in a transgenic mouse model requires human platelet factor 4 and platelet activation through FcgammaRIIA
.
Blood
.
2001
;
98
(
8
):
2442
-
2447
.
39.
Li
ZQ
,
Liu
W
,
Park
KS
, et al
.
Defining a second epitope for heparin-induced thrombocytopenia/thrombosis antibodies using KKO, a murine HIT-like monoclonal antibody
.
Blood
.
2002
;
99
(
4
):
1230
-
1236
.
40.
Lambert
MP
,
Rauova
L
,
Bailey
M
,
Sola-Visner
MC
,
Kowalska
MA
,
Poncz
M
.
Platelet factor 4 is a negative autocrine in vivo regulator of megakaryopoiesis: clinical and therapeutic implications
.
Blood
.
2007
;
110
(
4
):
1153
-
1160
.
41.
McKenzie
SE
,
Taylor
SM
,
Malladi
P
, et al
.
The role of the human Fc receptor Fc gamma RIIA in the immune clearance of platelets: a transgenic mouse model
.
J Immunol
.
1999
;
162
(
7
):
4311
-
4318
.
42.
Zhang
C
,
Thornton
MA
,
Kowalska
MA
, et al
.
Localization of distal regulatory domains in the megakaryocyte-specific platelet basic protein/platelet factor 4 gene locus
.
Blood
.
2001
;
98
(
3
):
610
-
617
.
43.
Sayah
DM
,
Mallavia
B
,
Liu
F
, et al;
Lung Transplant Outcomes Group Investigators
.
Neutrophil extracellular traps are pathogenic in primary graft dysfunction after lung transplantation
.
Am J Respir Crit Care Med
.
2015
;
191
(
4
):
455
-
463
.
44.
Caudrillier
A
,
Looney
MR
.
Platelet-neutrophil interactions as a target for prevention and treatment of transfusion-related acute lung injury
.
Curr Pharm Des
.
2012
;
18
(
22
):
3260
-
3266
.
45.
Shrum
B
,
Anantha
RV
,
Xu
SX
, et al
.
A robust scoring system to evaluate sepsis severity in an animal model
.
BMC Res Notes
.
2014
;
7
(
1
):
233
.
46.
Mai
SHC
,
Sharma
N
,
Kwong
AC
, et al
.
Body temperature and mouse scoring systems as surrogate markers of death in cecal ligation and puncture sepsis
.
Intensive Care Med Exp
.
2018
;
6
(
1
):
20
.
47.
Toscano
MG
,
Ganea
D
,
Gamero
AM
.
Cecal ligation puncture procedure
.
J Vis Exp
.
2011
(
51
).
48.
Ruiz
S
,
Vardon-Bounes
F
,
Merlet-Dupuy
V
, et al
.
Sepsis modeling in mice: ligation length is a major severity factor in cecal ligation and puncture
.
Intensive Care Med Exp
.
2016
;
4
(
1
):
22
.
49.
Hubbard
WJ
,
Choudhry
M
,
Schwacha
MG
, et al
.
Cecal ligation and puncture
.
Shock
.
2005
;
24
(
Suppl 1
):
52
-
57
.
50.
Ebong
S
,
Call
D
,
Nemzek
J
,
Bolgos
G
,
Newcomb
D
,
Remick
D
.
Immunopathologic alterations in murine models of sepsis of increasing severity
.
Infect Immun
.
1999
;
67
(
12
):
6603
-
6610
.
51.
Walley
KR
,
Lukacs
NW
,
Standiford
TJ
,
Strieter
RM
,
Kunkel
SL
.
Balance of inflammatory cytokines related to severity and mortality of murine sepsis
.
Infect Immun
.
1996
;
64
(
11
):
4733
-
4738
.
52.
Remick
DG
,
Newcomb
DE
,
Bolgos
GL
,
Call
DR
.
Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs. cecal ligation and puncture
.
Shock
.
2000
;
13
(
2
):
110
-
116
.
53.
Muller
S
,
Radic
M
.
Citrullinated autoantigens: from diagnostic markers to pathogenetic mechanisms
.
Clin Rev Allergy Immunol
.
2015
;
49
(
2
):
232
-
239
.
54.
Martin
L
,
Koczera
P
,
Zechendorf
E
,
Schuerholz
T
.
The endothelial glycocalyx: new diagnostic and therapeutic approaches in sepsis
.
BioMed Res Int
.
2016
;
2016
:
3758278
.
55.
Lorenz
R
,
Brauer
M
.
Platelet factor 4 (PF4) in septicaemia
.
Infection
.
1988
;
16
(
5
):
273
-
276
.
56.
Khandelwal
S
,
Lee
GM
,
Hester
CG
, et al
.
The antigenic complex in HIT binds to B cells via complement and complement receptor 2 (CD21)
.
Blood
.
2016
;
128
(
14
):
1789
-
1799
.
57.
Rauova
L
,
Hirsch
JD
,
Greene
TK
, et al
.
Monocyte-bound PF4 in the pathogenesis of heparin-induced thrombocytopenia
.
Blood
.
2010
;
116
(
23
):
5021
-
5031
.
58.
Collin
M
,
Olsén
A
.
EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG
.
EMBO J
.
2001
;
20
(
12
):
3046
-
3055
.
59.
Kowalska
MA
,
Krishnaswamy
S
,
Rauova
L
, et al
.
Antibodies associated with heparin-induced thrombocytopenia (HIT) inhibit activated protein C generation: new insights into the prothrombotic nature of HIT
.
Blood
.
2011
;
118
(
10
):
2882
-
2888
.
60.
Koyama
K
,
Madoiwa
S
,
Nunomiya
S
, et al
.
Combination of thrombin-antithrombin complex, plasminogen activator inhibitor-1, and protein C activity for early identification of severe coagulopathy in initial phase of sepsis: a prospective observational study
.
Crit Care
.
2014
;
18
(
1
):
R13
.
61.
Dejager
L
,
Pinheiro
I
,
Dejonckheere
E
,
Libert
C
.
Cecal ligation and puncture: the gold standard model for polymicrobial sepsis?
Trends Microbiol
.
2011
;
19
(
4
):
198
-
208
.
62.
Azeh
I
,
Gerber
J
,
Wellmer
A
, et al
.
Protein synthesis inhibiting clindamycin improves outcome in a mouse model of Staphylococcus aureus sepsis compared with the cell wall active ceftriaxone
.
Crit Care Med
.
2002
;
30
(
7
):
1560
-
1564
.
63.
Greinacher
A
.
Heparin-induced thrombocytopenia
.
N Engl J Med
.
2015
;
373
(
19
):
1883
-
1884
.
64.
Haile
LA
,
Rao
R
,
Polumuri
SK
, et al
.
PF4-HIT antibody (KKO) complexes activate broad innate immune and inflammatory responses
.
Thromb Res
.
2017
;
159
:
39
-
47
.
65.
Madeeva
D
,
Cines
DB
,
Poncz
M
,
Rauova
L
.
Role of monocytes and endothelial cells in heparin-induced thrombocytopenia
.
Thromb Haemost
.
2016
;
116
(
5
):
806
-
812
.
66.
Perdomo
J
,
Leung
HHL
,
Ahmadi
Z
, et al
.
Neutrophil activation and NETosis are the major drivers of thrombosis in heparin-induced thrombocytopenia
.
Nat Commun
.
2019
;
10
(
1
):
1322
.
67.
Maharaj
S
,
Chang
S
.
Anti-PF4/heparin antibodies are increased in hospitalized patients with bacterial sepsis
.
Thromb Res
.
2018
;
171
:
111
-
113
.
68.
Newall
F
,
Johnston
L
,
Ignjatovic
V
,
Summerhayes
R
,
Monagle
P
.
Age-related plasma reference ranges for two heparin-binding proteins--vitronectin and platelet factor 4
.
Int J Lab Hematol
.
2009
;
31
(
6
):
683
-
687
.
69.
Eicher
JD
,
Lettre
G
,
Johnson
AD
.
The genetics of platelet count and volume in humans
.
Platelets
.
2018
;
29
(
2
):
125
-
130
.
70.
Jaax
ME
,
Krauel
K
,
Marschall
T
, et al
.
Complex formation with nucleic acids and aptamers alters the antigenic properties of platelet factor 4
.
Blood
.
2013
;
122
(
2
):
272
-
281
.
71.
Khandelwal
S
,
Ravi
J
,
Rauova
L
, et al
.
Polyreactive IgM initiates complement activation by PF4/heparin complexes through the classical pathway
.
Blood
.
2018
;
132
(
23
):
2431
-
2440
.
72.
Andrew
SM
,
Titus
JA
.
Fragmentation of immunoglobulin G
.
2003
;
16
:
16.4.1
-
16.4.10
.
73.
Nandakumar
KS
,
Holmdahl
R
.
Therapeutic cleavage of IgG: new avenues for treating inflammation
.
Trends Immunol
.
2008
;
29
(
4
):
173
-
178
.
74.
Kizlik-Masson
C
,
Deveuve
Q
,
Zhou
Y
, et al
.
Cleavage of anti-PF4/heparin IgG by a bacterial protease and potential benefit in heparin-induced thrombocytopenia
.
Blood
.
2019
;
133
(
22
):
2427
-
2435
.
75.
Johansson
BP
,
Shannon
O
,
Björck
L
.
IdeS: a bacterial proteolytic enzyme with therapeutic potential
.
PLoS One
.
2008
;
3
(
2
):
e1692
.
76.
Jordan
SC
,
Lorant
T
,
Choi
J
.
IgG endopeptidase in highly sensitized patients undergoing transplantation
.
N Engl J Med
.
2017
;
377
(
17
):
1693
-
1694
.
77.
Tradtrantip
L
,
Asavapanumas
N
,
Verkman
AS
.
Therapeutic cleavage of anti-aquaporin-4 autoantibody in neuromyelitis optica by an IgG-selective proteinase
.
Mol Pharmacol
.
2013
;
83
(
6
):
1268
-
1275
.
78.
Brinkmann
V
,
Reichard
U
,
Goosmann
C
, et al
.
Neutrophil extracellular traps kill bacteria
.
Science
.
2004
;
303
(
5663
):
1532
-
1535
.
79.
Li
P
,
Li
M
,
Lindberg
MR
,
Kennett
MJ
,
Xiong
N
,
Wang
Y
.
PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps
.
J Exp Med
.
2010
;
207
(
9
):
1853
-
1862
.
80.
Alhamdi
Y
,
Toh
CH
.
Recent advances in pathophysiology of disseminated intravascular coagulation: the role of circulating histones and neutrophil extracellular traps
.
F1000 Res
.
2017
;
6
:
2143
.
81.
Chen
G
,
Zhang
D
,
Fuchs
TA
,
Manwani
D
,
Wagner
DD
,
Frenette
PS
.
Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease
.
Blood
.
2014
;
123
(
24
):
3818
-
3827
.
82.
Radic
M
,
Pattanaik
D
.
Cellular and molecular mechanisms of anti-phospholipid syndrome
.
Front Immunol
.
2018
;
9
:
969
.
83.
Kowalska
MA
,
Rauova
L
,
Poncz
M
.
Role of the platelet chemokine platelet factor 4 (PF4) in hemostasis and thrombosis
.
Thromb Res
.
2010
;
125
(
4
):
292
-
296
.
You do not currently have access to this content.