Key Points

  • Chemotherapy-induced mutagenesis may cause drug resistance mutations in ALL, leading to relapse.

To study the mechanisms of relapse in acute lymphoblastic leukemia (ALL), we performed whole-genome sequencing of 103 diagnosis-relapse-germline trios and ultra-deep sequencing of 208 serial samples in 16 patients. Relapse-specific somatic alterations were enriched in 12 genes (NR3C1, NR3C2, TP53, NT5C2, FPGS, CREBBP, MSH2, MSH6, PMS2, WHSC1, PRPS1, and PRPS2) involved in drug response. Their prevalence was 17% in very early relapse (<9 months from diagnosis), 65% in early relapse (9-36 months), and 32% in late relapse (>36 months) groups. Convergent evolution, where multiple subclones harbor mutations in the same drug resistance gene, was observed in six relapses and confirmed by single-cell sequencing in one case. Mathematical modeling and mutational signature analysis indicated that early relapse resistance acquisition was frequently two-step process where a persistent clone survived initial therapy, and later acquired bona fide resistance mutations during therapy. In contrast, very early relapses arose from pre-existing resistant clone(s). Two novel relapse-specific mutational signatures, one of which was caused by thiopurine treatment based on in vitro drug exposure experiments, were identified in early and late relapses but were absent from 2,540 pan-cancer diagnosis samples and 129 non-ALL relapses. The novel signatures were detected in 27% of relapsed ALLs and were responsible for 46% of acquired resistance mutations in NT5C2, PRPS1, NR3C1, and TP53. These results suggest that chemotherapy-induced drug resistance mutations facilitate a subset of pediatric ALL relapses.

This content is only available as a PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.