Key Points

  • Conditional deletion of lysine acetyltransferase 5 (Tip60) in murine hematopoietic system leads to HSC loss, both in fetal and adult stage.

  • Tip60 regulates genes that are involved in critical biological processes for HSC maintenance through acetylation of H2A.Z.

Hematopoietic stem cells (HSC) have the potential to replenish the blood system for the lifetime of the organism. Their two defining properties, self-renewal and differentiation, are tightly regulated by the epigenetic machineries. Here, using conditional gene knockout models, we demonstrate a critical requirement of lysine acetyltransferase 5 (Kat5, also known as Tip60) for murine HSC maintenance both in the embryonic and adult stages, which depends on its acetyltransferase activity. Genome-wide chromatin and transcriptome profiling in murine hematopoietic stem and progenitor cells revealed that Tip60 co-localizes with c-Myc and that Tip60 deletion suppress the expression of Myc target genes, which are associated with critical biological processes for HSC maintenance, cell-cycle and DNA repair. Notably, acetylated H2A.Z (acH2A.Z) was enriched at the Tip60-bound active chromatin and Tip60 deletion induced a robust reduction in the acH2A.Z / H2A.Z ratio. These results uncover a critical epigenetic regulatory layer for HSC maintenance at least in part through Tip60 dependent H2A.Z acetylation to activate Myc target genes.

This content is only available as a PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.