Key Points

  • Among lymphoid malignancy patients treated with ibrutinib, the subsequent incidence of new hypertension is nearly 72%.

  • Development of new or worsened HTN after ibrutinib initiation associates with a more than twofold increased risk of other cardiac events.

Abstract

Ibrutinib is associated with dramatic efficacy against B-cell malignancies. Yet, it has been linked with potentially limiting cardiotoxicity, including emerging reports of profound hypertension (HTN). The long-term incidence, severity, and impact of HTN development with ibrutinib are unknown. Therefore, in 562 consecutive patients treated with ibrutinib for B-cell malignancies from 2009 through 2016, we assessed the new/incident or worsened HTN (systolic blood pressure [BP] cutoff, 130 mm Hg). Observed incident HTN rates were compared with Framingham-heart–predicted incident HTN rates. We also evaluated the relationship of HTN to the development of other major adverse cardiovascular events (MACEs), including arrhythmia, myocardial infarction, stroke, heart failure, and cardiovascular death. Further, we assessed the effects of different antihypertensive classes on ibrutinib-related HTN. Overall, 78.3% of ibrutinib users developed new or worsened HTN over a median of 30 months. New HTN developed in 71.6% of ibrutinib users, with a time to 50% cumulative incidence of 4.2 months. Among those without preceding HTN, 17.7% developed high-grade HTN (BP >160/100 mm Hg). In multivariate regression, new or worsened HTN was associated with increased MACEs (hazard ratio [HR], 2.17; 95% confidence interval [CI], 1.08-4.38). No single antihypertensive class was associated with prevention or control of ibrutinib-related HTN. However, antihypertensive initiation was associated with a lower risk of a MACE (HR, 0.40; 95% CI, 0.24-0.66). Collectively, these data suggest that ibrutinib is associated with a substantial increase in the incidence and severity of HTN, and that HTN development carries a higher risk of subsequent cardiotoxic events.

REFERENCES

REFERENCES
1.
Byrd
JC
,
Furman
RR
,
Coutre
SE
, et al
.
Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia
.
N Engl J Med
.
2013
;
369
(
1
):
32
-
42
.
2.
Woyach
JA
,
Ruppert
AS
,
Heerema
NA
, et al
.
Ibrutinib Regimens versus Chemoimmunotherapy in Older Patients with Untreated CLL
.
N Engl J Med
.
2018
;
379
(
26
):
2517
-
2528
.
3.
Wang
ML
,
Rule
S
,
Martin
P
, et al
.
Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma
.
N Engl J Med
.
2013
;
369
(
6
):
507
-
516
.
4.
Treon
SP
,
Tripsas
CK
,
Meid
K
, et al
.
Ibrutinib in previously treated Waldenström’s macroglobulinemia
.
N Engl J Med
.
2015
;
372
(
15
):
1430
-
1440
.
5.
Byrd
JC
,
Furman
RR
,
Coutre
SE
, et al
.
Three-year follow-up of treatment-naïve and previously treated patients with CLL and SLL receiving single-agent ibrutinib
.
Blood
.
2015
;
125
(
16
):
2497
-
2506
.
6.
Gao
W
,
Wang
M
,
Wang
L
, et al
.
Selective antitumor activity of ibrutinib in EGFR-mutant non-small cell lung cancer cells
.
J Natl Cancer Inst
.
2014
;
106
(
9
):
1
-
4
.
7.
Sagiv-Barfi
I
,
Kohrt
HE
,
Czerwinski
DK
,
Ng
PP
,
Chang
BY
,
Levy
R
.
Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK
.
Proc Natl Acad Sci USA
.
2015
;
112
(
9
):
E966
-
E972
.
8.
Molina-Cerrillo
J
,
Alonso-Gordoa
T
,
Gajate
P
,
Grande
E
.
Bruton’s tyrosine kinase (BTK) as a promising target in solid tumors
.
Cancer Treat Rev
.
2017
;
58
:
41
-
50
.
9. .
222 Studies found for: ibrutinib. U.S. National Library of Medicine
. .
10.
Leong
DP
,
Caron
F
,
Hillis
C
, et al
.
The risk of atrial fibrillation with ibrutinib use: a systematic review and meta-analysis
.
Blood
.
2016
;
128
(
1
):
138
-
140
.
11.
Wiczer
TE
,
Levine
LB
,
Brumbaugh
J
, et al
.
Cumulative incidence, risk factors, and management of atrial fibrillation in patients receiving ibrutinib
.
Blood Adv
.
2017
;
1
(
20
):
1739
-
1748
.
12.
Ahn
IE
,
Farooqui
MZH
,
Tian
X
, et al
.
Depth and durability of response to ibrutinib in CLL: 5-year follow-up of a phase 2 study
.
Blood
.
2018
;
131
(
21
):
2357
-
2366
.
13.
Guha
A
,
Derbala
MH
,
Zhao
Q
, et al
.
Ventricular Arrhythmias Following Ibrutinib Initiation for Lymphoid Malignancies
.
J Am Coll Cardiol
.
2018
;
72
(
6
):
697
-
698
.
14.
Lampson
BL
,
Yu
L
,
Glynn
RJ
, et al
.
Ventricular arrhythmias and sudden death in patients taking ibrutinib
.
Blood
.
2017
;
129
(
18
):
2581
-
2584
.
15.
Binsah
G
,
Philip
TA
,
Ferrajoli
A
, et al
.
An observational study of the occurrence of atrial fibrillation and hypertension in patients treated with ibrutinib [abstract]
.
Blood
.
2014
;
124
(
21
).
Abstract 5657
16.
O’Brien
S
,
Hillmen
P
,
Coutre
S
, et al
.
Safety Analysis of Four Randomized Controlled Studies of Ibrutinib in Patients With Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma or Mantle Cell Lymphoma
.
Clin Lymphoma Myeloma Leuk
.
2018
;
18
(
10
):
648
-
657.e15
.
17.
Caldeira
D
,
Alves
D
,
Costa
J
,
Ferreira
JJ
,
Pinto
FJ
.
Ibrutinib increases the risk of hypertension and atrial fibrillation: Systematic review and meta-analysis
.
PLoS One
.
2019
;
14
(
2
):
e0211228
.
18.
Whelton
PK
,
Carey
RM
,
Aronow
WS
, et al
.
2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines
.
Circulation
.
2018
;
138
(
17
):
e426
-
e483
.
19.
Wright
JT
Jr
,
Williamson
JD
,
Whelton
PK
, et al;
SPRINT Research Group
.
A Randomized Trial of Intensive versus Standard Blood-Pressure Control
.
N Engl J Med
.
2015
;
373
(
22
):
2103
-
2116
.
20.
Division of Cancer Treatment and Diagnosis
. Common Terminology Criteria for Adverse Events (CTCAE), version 5.0. Bethesda, MD: National Cancer Institute;
2017
. Available at https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm#ctc_50. Accessed 30 June 2018.
21.
Naranjo
CA
,
Busto
U
,
Sellers
EM
, et al
.
A method for estimating the probability of adverse drug reactions
.
Clin Pharmacol Ther
.
1981
;
30
(
2
):
239
-
245
.
22.
Benjamin
EJ
,
Virani
SS
,
Callaway
CW
, et al;
American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee
.
Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association [published correction appears in Circulation. 2018;137(12):e493]
.
Circulation
.
2018
;
137
(
12
):
e67
-
e492
.
23.
Parikh
NI
,
Pencina
MJ
,
Wang
TJ
, et al
.
A risk score for predicting near-term incidence of hypertension: the Framingham Heart Study
.
Ann Intern Med
.
2008
;
148
(
2
):
102
-
110
.
24.
James
PA
,
Oparil
S
,
Carter
BL
, et al
.
2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8)
.
JAMA
.
2014
;
311
(
5
):
507
-
520
.
25.
Chu
TF
,
Rupnick
MA
,
Kerkela
R
, et al
.
Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib
.
Lancet
.
2007
;
370
(
9604
):
2011
-
2019
.
26.
Schmidinger
M
,
Zielinski
CC
,
Vogl
UM
, et al
.
Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma
.
J Clin Oncol
.
2008
;
26
(
32
):
5204
-
5212
.
27.
Sternberg
CN
,
Davis
ID
,
Mardiak
J
, et al
.
Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial
.
J Clin Oncol
.
2010
;
28
(
6
):
1061
-
1068
.
28.
O’Brien
S
,
Furman
RR
,
Coutre
S
, et al
.
Single-agent ibrutinib in treatment-naïve and relapsed/refractory chronic lymphocytic leukemia: a 5-year experience
.
Blood
.
2018
;
131
(
17
):
1910
-
1919
.
29.
Srikanthan
A
,
Ethier
JL
,
Ocana
A
,
Seruga
B
,
Krzyzanowska
MK
,
Amir
E
.
Cardiovascular toxicity of multi-tyrosine kinase inhibitors in advanced solid tumors: a population-based observational study
.
PLoS One
.
2015
;
10
(
3
):
e0122735
.
30.
Stone
RL
,
Sood
AK
,
Coleman
RL
.
Collateral damage: toxic effects of targeted antiangiogenic therapies in ovarian cancer
.
Lancet Oncol
.
2010
;
11
(
5
):
465
-
475
.
31.
Małyszko
J
,
Małyszko
M
,
Kozlowski
L
,
Kozlowska
K
,
Małyszko
J
.
Hypertension in malignancy-an underappreciated problem
.
Oncotarget
.
2018
;
9
(
29
):
20855
-
20871
.
32.
Gashonia
L
,
Carver
J
,
O’Quinn
R
, et al
.
Persistence of ibrutinib-associated hypertension in CLL pts treated in a real-world experience [abstract]
.
J Clin Oncol.
2017
;
35
(
suppl 15
).
Abstract 7525
.
33.
McMullen
JR
,
Boey
EJ
,
Ooi
JY
,
Seymour
JF
,
Keating
MJ
,
Tam
CS
.
Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K-Akt signaling
.
Blood
.
2014
;
124
(
25
):
3829
-
3830
.
34.
Liu
N
,
Rowley
BR
,
Bull
CO
, et al
.
BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110α and p110δ activities in tumor cell lines and xenograft models
.
Mol Cancer Ther
.
2013
;
12
(
11
):
2319
-
2330
.
35.
Pretorius
L
,
Du
XJ
,
Woodcock
EA
, et al
.
Reduced phosphoinositide 3-kinase (p110alpha) activation increases the susceptibility to atrial fibrillation
.
Am J Pathol
.
2009
;
175
(
3
):
998
-
1009
.
36.
Furman
RR
,
Sharman
JP
,
Coutre
SE
, et al
.
Idelalisib and rituximab in relapsed chronic lymphocytic leukemia
.
N Engl J Med
.
2014
;
370
(
11
):
997
-
1007
.
37.
Gopal
AK
,
Kahl
BS
,
de Vos
S
, et al
.
PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma
.
N Engl J Med
.
2014
;
370
(
11
):
1008
-
1018
.
38.
Dreyling
M
,
Cunningham
D
,
Bouabdallah
K
, et al
.
Phase 2A study of copanlisib, a novel PI3K inhibitor, in patients with indolent lymphoma [abstract]
.
Blood
.
2014
;
124
(
21
).
Abstract 1701
.
39.
Byrd
JC
,
Hillmen
P
,
James
DF
.
Response: additional data needed for a better understanding of the potential relationship between atrial fibrillation and ibrutinib
.
Blood
.
2015
;
125
(
10
):
1673
.
40.
Paul
J
,
Soujon
M
,
Wengner
AM
, et al
.
Simultaneous Inhibition of PI3Kδ and PI3Kα Induces ABC-DLBCL Regression by Blocking BCR-Dependent and -Independent Activation of NF-κB and AKT
.
Cancer Cell
.
2017
;
31
(
1
):
64
-
78
.
41.
Natarajan
G
,
Terrazas
C
,
Oghumu
S
, et al
.
Ibrutinib enhances IL-17 response by modulating the function of bone marrow derived dendritic cells
.
OncoImmunology
.
2015
;
5
(
1
):
e1057385
.
42.
Ping
L
,
Ding
N
,
Shi
Y
, et al
.
The Bruton’s tyrosine kinase inhibitor ibrutinib exerts immunomodulatory effects through regulation of tumor-infiltrating macrophages
.
Oncotarget
.
2017
;
8
(
24
):
39218
-
39229
.
43.
Byrd
JC
,
Harrington
B
,
O’Brien
S
, et al
.
Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia
.
N Engl J Med
.
2016
;
374
(
4
):
323
-
332
.
44.
Kim
KI
,
Lee
JH
,
Chang
HJ
, et al
.
Association between blood pressure variability and inflammatory marker in hypertensive patients
.
Circ J
.
2008
;
72
(
2
):
293
-
298
.
45.
Madhur
MS
,
Lob
HE
,
McCann
LA
, et al
.
Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction
.
Hypertension
.
2010
;
55
(
2
):
500
-
507
.
46.
Wu
N
,
Xu
B
,
Liu
Y
, et al
.
Elevated plasma levels of Th17-related cytokines are associated with increased risk of atrial fibrillation
.
Sci Rep
.
2016
;
6
(
1
):
26543
.
47.
Long
M
,
Beckwith
K
,
Do
P
, et al
.
Ibrutinib treatment improves T cell number and function in CLL patients
.
J Clin Invest
.
2017
;
127
(
8
):
3052
-
3064
.
You do not currently have access to this content.