• Slower O2 unloading from stored blood reduces O2 extraction in perfused kidneys, indicating diffusion-limited O2 release at capillaries.

  • Biochemical rejuvenation of kinetically compromised stored RBCs restores rapid O2 release and raises renal cortex O2 tension by 60%.

Abstract

The volume of oxygen drawn from systemic capillaries down a partial pressure gradient is determined by the oxygen content of red blood cells (RBCs) and their oxygen-unloading kinetics, although the latter is assumed to be rapid and, therefore, not a meaningful factor. Under this paradigm, oxygen transfer to tissues is perfusion-limited. Consequently, clinical treatments to optimize oxygen delivery aim at improving blood flow and arterial oxygen content, rather than RBC oxygen handling. Although the oxygen-carrying capacity of blood is increased with transfusion, studies have shown that stored blood undergoes kinetic attrition of oxygen release, which may compromise overall oxygen delivery to tissues by causing transport to become diffusion-limited. We sought evidence for diffusion-limited oxygen release in viable human kidneys, normothermically perfused with stored blood. In a cohort of kidneys that went on to be transplanted, renal respiration correlated inversely with the time-constant of oxygen unloading from RBCs used for perfusion. Furthermore, the renal respiratory rate did not correlate with arterial O2 delivery unless this factored the rate of oxygen-release from RBCs, as expected from diffusion-limited transport. To test for a rescue effect, perfusion of kidneys deemed unsuitable for transplantation was alternated between stored and rejuvenated RBCs of the same donation. This experiment controlled oxygen-unloading, without intervening ischemia, holding all non-RBC parameters constant. Rejuvenated oxygen-unloading kinetics improved the kidney’s oxygen diffusion capacity and increased cortical oxygen partial pressure by 60%. Thus, oxygen delivery to tissues can become diffusion-limited during perfusion with stored blood, which has implications in scenarios, such as ex vivo organ perfusion, major hemorrhage, and pediatric transfusion. This trial was registered at www.clinicaltrials.gov as #ISRCTN13292277.

1.
Boron
WF
. Chapter 30: “Ventilation and perfusion of the lungs”. In:
Boulpaep
EL
,
Boron
WF
, eds.
Medical Physiology
.
Saunders Elsevier
;
2009
:
690
-
692
.
2.
Kobayashi
H
,
Pelster
B
,
Piiper
J
,
Scheid
P
.
Diffusion and perfusion limitation in alveolar O2 exchange: shape of the blood O2 equilibrium curve
.
Respir Physiol
.
1991
;
83
(
1
):
23
-
34
.
3.
Piiper
J
,
Scheid
P
.
Model for capillary-alveolar equilibration with special reference to O2 uptake in hypoxia
.
Respir Physiol
.
1981
;
46
(
3
):
193
-
208
.
4.
Leach
RM
,
Treacher
DF
.
The pulmonary physician in critical care ∗ 2: oxygen delivery and consumption in the critically ill
.
Thorax
.
2002
;
57
(
2
):
170
-
177
.
5.
Rivers
E
,
Nguyen
B
,
Havstad
S
, et al
.
Early goal-directed therapy in the treatment of severe sepsis and septic shock
.
N Engl J Med
.
2001
;
345
(
19
):
1368
-
1377
.
6.
Yealy
DM
,
Kellum
JA
, et al;
ProCESS Investigators
.
A randomized trial of protocol-based care for early septic shock
.
N Engl J Med
.
2014
;
370
(
18
):
1683
-
1693
.
7.
Peake
SL
, et al;
ARISE Investigators
ANZICS Clinical Trials Group
.
Goal-directed resuscitation for patients with early septic shock
.
N Engl J Med
.
2014
;
371
(
16
):
1496
-
1506
.
8.
Mouncey
PR
,
Osborn
TM
,
Power
GS
, et al
.
Trial of early, goal-directed resuscitation for septic shock
.
N Engl J Med
.
2015
;
372
(
14
):
1301
-
1311
.
9.
Allard
MF
,
Kamimura
CT
,
English
DR
,
Henning
SL
,
Wiggs
BR
.
Regional myocardial capillary erythrocyte transit time in the normal resting heart
.
Circ Res
.
1993
;
72
(
1
):
187
-
193
.
10.
Richardson
SL
,
Hulikova
A
,
Proven
M
, et al
.
Single-cell O(2) exchange imaging shows that cytoplasmic diffusion is a dominant barrier to efficient gas transport in red blood cells
.
Proc Natl Acad Sci U S A
.
2020
;
117
(
18
):
10067
-
10078
.
11.
Chakraborty
S
,
Balakotaiah
V
,
Bidani
A
.
Diffusing capacity reexamined: relative roles of diffusion and chemical reaction in red cell uptake of O2, CO, CO2, and NO
.
J Appl Physiol (1985)
.
2004
;
97
(
6
):
2284
-
2302
.
12.
Geers
C
,
Gros
G
.
Carbon dioxide transport and carbonic anhydrase in blood and muscle
.
Physiol Rev
.
2000
;
80
(
2
):
681
-
715
.
13.
Gros
G
,
Moll
W
.
The diffusion of carbon dioxide in erythrocytes and hemoglobin solutions
.
Pflugers Arch
.
1971
;
324
(
3
):
249
-
266
.
14.
Vandegriff
KD
,
Olson
JS
.
Morphological and physiological factors affecting oxygen uptake and release by red blood cells
.
J Biol Chem
.
1984
;
259
(
20
):
12619
-
12627
.
15.
Vandegriff
KD
,
Olson
JS
.
The kinetics of O2 release by human red blood cells in the presence of external sodium dithionite
.
J Biol Chem
.
1984
;
259
(
20
):
12609
-
12618
.
16.
Bennett-Guerrero
E
,
Veldman
TH
,
Doctor
A
, et al
.
Evolution of adverse changes in stored RBCs
.
Proc Natl Acad Sci U S A
.
2007
;
104
(
43
):
17063
-
17068
.
17.
Yoshida
T
,
Prudent
M
,
D'Alessandro
A
.
Red blood cell storage lesion: causes and potential clinical consequences
.
Blood Transfus
.
2019
;
17
(
1
):
27
-
52
.
18.
Donovan
K
,
Meli
A
,
Cendali
F
, et al
.
Stored blood has compromised oxygen unloading kinetics that can be normalized with rejuvenation and predicted from corpuscular side-scatter
.
Haematologica
.
2022
;
107
(
1
):
298
-
302
.
19.
Heddle
NM
,
Cook
RJ
,
Arnold
DM
, et al
.
Effect of short-term vs. long-term blood storage on mortality after transfusion
.
N Engl J Med
.
2016
;
375
(
20
):
1937
-
1945
.
20.
Cooper
DJ
,
McQuilten
ZK
,
Nichol
A
, et al
.
Age of red cells for transfusion and outcomes in critically ill adults
.
N Engl J Med
.
2017
;
377
(
19
):
1858
-
1867
.
21.
Lacroix
J
,
Hébert
PC
,
Fergusson
DA
, et al
.
Age of transfused blood in critically ill adults
.
N Engl J Med
.
2015
;
372
(
15
):
1410
-
1418
.
22.
Carson
JL
,
Stanworth
SJ
,
Alexander
JH
, et al
.
Clinical trials evaluating red blood cell transfusion thresholds: an updated systematic review and with additional focus on patients with cardiovascular disease
.
Am Heart J
.
2018
;
200
:
96
-
101
.
23.
Trivella
M
,
Stanworth
SJ
,
Brunskill
S
,
Dutton
P
,
Altman
DG
.
Can we be certain that storage duration of transfused red blood cells does not affect patient outcomes?
.
BMJ
.
2019
;
365
:
l2320
.
24.
Weissenbacher
A
,
Hunter
J
.
Normothermic machine perfusion of the kidney
.
Curr Opin Organ Transplant
.
2017
;
22
(
6
):
571
-
576
.
25.
Weissenbacher
A
,
Vrakas
G
,
Nasralla
D
,
Ceresa
CDL
.
The future of organ perfusion and re-conditioning
.
Transpl Int
.
2019
;
32
(
6
):
586
-
597
.
26.
Rabcuka
J
,
Blonski
S
,
Meli
A
, et al
.
Metabolic reprogramming under hypoxic storage preserves faster oxygen unloading from stored red blood cells
.
Blood Adv
.
2022
;
6
(
18
):
5415
-
5428
.
27.
Wagner
PD
.
Diffusion and chemical reaction in pulmonary gas exchange
.
Physiol Rev
.
1977
;
57
(
2
):
257
-
312
.
28.
Wexler
J
,
Whittengerger
JL
,
Himmelfarb
S
.
An objective method for determining circulation time from pulmonary to systemic capillaries by the use of the oximeter
.
J Clin Invest
.
1946
;
25
:
447
-
450
.
29.
Raat
NJ
,
Hilarius
PM
,
Johannes
T
,
de Korte
D
,
Ince
C
,
Verhoeven
AJ
.
Rejuvenation of stored human red blood cells reverses the renal microvascular oxygenation deficit in an isovolemic transfusion model in rats
.
Transfusion
.
2009
;
49
(
3
):
427
. 424.
30.
Harms
CA
,
McClaran
SR
,
Nickele
GA
,
Pegelow
DF
,
Nelson
WB
,
Dempsey
JA
.
Exercise-induced arterial hypoxaemia in healthy young women
.
J Physiol
.
1998
;
507
(
pt 2
):
619
-
628
.
31.
Solheim
SA
,
Bejder
J
,
Breenfeldt Andersen
A
,
Mørkeberg
J
,
Nordsborg
NB
.
Autologous blood transfusion enhances exercise performance-strength of the evidence and physiological mechanisms
.
Sports Med Open
.
2019
;
5
(
1
):
30
.
32.
Bennett-Guerrero
E
,
Lockhart
EL
,
Bandarenko
N
, et al
.
A randomized controlled pilot study of VO(2) max testing: a potential model for measuring relative in vivo efficacy of different red blood cell products
.
Transfusion
.
2017
;
57
(
3
):
630
-
636
.
33.
Scott
AV
,
Nagababu
E
,
Johnson
DJ
, et al
.
2,3-Diphosphoglycerate concentrations in autologous salvaged versus stored red blood cells and in surgical patients after transfusion
.
Anesth Analg
.
2016
;
122
(
3
):
616
-
623
.
34.
Hébert
PC
,
Wells
G
,
Blajchman
MA
, et al
.
A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group
.
N Engl J Med
.
1999
;
340
(
6
):
409
-
417
.
35.
Lacroix
J
,
Hébert
PC
,
Hutchison
JS
, et al
.
Transfusion strategies for patients in pediatric intensive care units
.
N Engl J Med
.
2007
;
356
(
16
):
1609
-
1619
.
36.
Rowan
KM
,
Angus
DC
, et al;
PRISM Investigators
.
Early, goal-directed therapy for septic shock - a patient-level meta-analysis
.
N Engl J Med
.
2017
;
376
(
23
):
2223
-
2234
.
37.
Angus
DC
,
Barnato
AE
,
Bell
D
, et al
.
A systematic review and meta-analysis of early goal-directed therapy for septic shock: the ARISE, ProCESS and ProMISe Investigators
.
Intensive Care Med
.
2015
;
41
(
9
):
1549
-
1560
.
38.
Dupuis
C
,
Sonneville
R
,
Adrie
C
, et al
.
Impact of transfusion on patients with sepsis admitted in intensive care unit: a systematic review and meta-analysis
.
Ann Intensive Care
.
2017
;
7
(
1
):
5
.
39.
Evans
L
,
Rhodes
A
,
Alhazzani
W
, et al
.
Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021
.
Crit Care Med
.
2021
;
49
(
11
):
e1063
-
e1143
.
You do not currently have access to this content.
Sign in via your Institution