• PRMT5 inhibition restores regulation of the cell cycle, promotes cell death, and reactivates negative regulators of the BCR in MCL.

  • Wild-type TP53 and MTAP deletion are biomarkers predicting refractory MCL vulnerability to PRMT5-targeted therapy.

Mantle cell lymphoma (MCL) is an incurable B-cell malignancy with an overall poor prognosis, particularly for patients that progress on targeted therapies. Novel, more durable treatment options are needed for patients with MCL. Protein arginine methyltransferase 5 (PRMT5) is overexpressed in MCL and plays an important oncogenic role in this disease via epigenetic and posttranslational modification of cell cycle regulators, DNA repair genes, components of prosurvival pathways, and RNA splicing regulators. The mechanism of targeting PRMT5 in MCL remains incompletely characterized. Here, we report on the antitumor activity of PRMT5 inhibition in MCL using integrated transcriptomics of in vitro and in vivo models of MCL. Treatment with a selective small-molecule inhibitor of PRMT5, PRT-382, led to growth arrest and cell death and provided a therapeutic benefit in xenografts derived from patients with MCL. Transcriptional reprograming upon PRMT5 inhibition led to restored regulatory activity of the cell cycle (p-RB/E2F), apoptotic cell death (p53-dependent/p53-independent), and activation of negative regulators of B-cell receptor-PI3K/AKT signaling (PHLDA3, PTPROt, and PIK3IP1). We propose pharmacologic inhibition of PRMT5 for patients with relapsed/refractory MCL and identify MTAP/CDKN2A deletion and wild-type TP53 as biomarkers that predict a favorable response. Selective targeting of PRMT5 has significant activity in preclinical models of MCL and warrants further investigation in clinical trials.

1.
Schieber
M
,
Gordon
LI
,
Karmali
R
.
Current overview and treatment of mantle cell lymphoma
.
F1000Res
.
2018
. ;
7
. F1000 Faculty Rev-1136.
2.
Jares
P
,
Campo
E
.
Advances in the understanding of mantle cell lymphoma
.
Br J Haematol
.
2008
. ;
142
(
2
):
149
-
165
.
3.
Saba
NS
,
Liu
D
,
Herman
SE
, et al
.
Pathogenic role of B-cell receptor signaling and canonical NF-κB activation in mantle cell lymphoma
.
Blood
.
2016
. ;
128
(
1
):
82
-
92
.
4.
Martin
P
,
Maddocks
K
,
Leonard
JP
, et al
.
Postibrutinib outcomes in patients with mantle cell lymphoma
.
Blood
.
2016
. ;
127
(
12
):
1559
-
1563
.
5.
Wang
ML
,
Rule
S
,
Martin
P
, et al
.
Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma
.
N Engl J Med
.
2013
. ;
369
(
6
):
507
-
516
.
6.
Advani
RH
,
Buggy
JJ
,
Sharman
JP
, et al
.
Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies
.
J Clin Oncol
.
2013
. ;
31
(
1
):
88
-
94
.
7.
Dreyling
M
,
Jurczak
W
,
Jerkeman
M
, et al
.
Ibrutinib versus temsirolimus in patients with relapsed or refractory mantle-cell lymphoma: an international, randomised, open-label, phase 3 study
.
Lancet
.
2016
. ;
387
(
10020
):
770
-
778
.
8.
Wang
ML
,
Blum
KA
,
Martin
P
, et al
.
Long-term follow-up of MCL patients treated with single-agent ibrutinib: updated safety and efficacy results
.
Blood
.
2015
. ;
126
(
6
):
739
-
745
.
9.
Wang
M
,
Munoz
J
,
Goy
A
, et al
.
KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma
.
N Engl J Med
.
2020
. ;
382
(
14
):
1331
-
1342
.
10.
Hanel
W
,
Epperla
N
.
Emerging therapies in mantle cell lymphoma
.
J Hematol Oncol
.
2020
. ;
13
(
1
):
79
.
11.
Musiani
D
,
Bok
J
,
Massignani
E
, et al
.
Proteomics profiling of arginine methylation defines PRMT5 substrate specificity
.
Sci Signal
.
2019
. ;
12
(
575
):
eaat8388
.
12.
Meister
G
,
Eggert
C
,
Buhler
D
,
Brahms
H
,
Kambach
C
,
Fischer
U
.
Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln
.
Curr Biol
.
2001
. ;
11
(
24
):
1990
-
1994
.
13.
Bezzi
M
,
Teo
SX
,
Muller
J
, et al
.
Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery
.
Genes Dev
.
2013
. ;
27
(
17
):
1903
-
1916
.
14.
Litzler
LC
,
Zahn
A
,
Meli
AP
, et al
.
PRMT5 is essential for B cell development and germinal center dynamics
.
Nat Commun
.
2019
. ;
10
(
1
):
22
.
15.
Tarighat
SS
,
Santhanam
R
,
Frankhouser
D
, et al
.
The dual epigenetic role of PRMT5 in acute myeloid leukemia: gene activation and repression via histone arginine methylation
.
Leukemia
.
2016
. ;
30
(
4
):
789
-
799
.
16.
Owens
JL
,
Beketova
E
,
Liu
S
, et al
.
PRMT5 cooperates with pICln to function as a master epigenetic activator of DNA double-strand break repair genes
.
iScience
.
2020
. ;
23
(
1
):
100750
.
17.
Clarke
TL
,
Sanchez-Bailon
MP
,
Chiang
K
, et al
.
PRMT5-dependent methylation of the TIP60 coactivator RUVBL1 is a key regulator of homologous recombination
.
Mol Cell
.
2017
. ;
65
(
5
):
900
-
916.e7
.
18.
Hamard
PJ
,
Santiago
GE
,
Liu
F
, et al
.
PRMT5 regulates DNA repair by controlling the alternative splicing of histone-modifying enzymes
.
Cell Rep
.
2018
. ;
24
(
10
):
2643
-
2657
.
19.
Hwang
JW
,
Kim
SN
,
Myung
N
, et al
.
PRMT5 promotes DNA repair through methylation of 53BP1 and is regulated by Src-mediated phosphorylation
.
Commun Biol
.
2020
. ;
3
(
1
):
428
.
20.
Wang
Y
,
Hu
W
,
Yuan
Y
.
Protein arginine methyltransferase 5 (PRMT5) as an anticancer target and its inhibitor discovery
.
J Med Chem
.
2018
. ;
61
(
21
):
9429
-
9441
.
21.
Pal
S
,
Baiocchi
RA
,
Byrd
JC
,
Grever
MR
,
Jacob
ST
,
Sif
S
.
Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma
.
EMBO J
.
2007
. ;
26
(
15
):
3558
-
3569
.
22.
Li
Y
,
Diehl
JA
.
PRMT5-dependent p53 escape in tumorigenesis
.
Oncoscience
.
2015
. ;
2
(
8
):
700
-
702
.
23.
Cho
EC
,
Zheng
S
,
Munro
S
, et al
.
Arginine methylation controls growth regulation by E2F-1
.
EMBO J
.
2012
. ;
31
(
7
):
1785
-
1797
.
24.
Barczak
W
,
Jin
L
,
Carr
SM
, et al
.
PRMT5 promotes cancer cell migration and invasion through the E2F pathway
.
Cell Death Dis
.
2020
. ;
11
(
7
):
572
.
25.
Pastore
F
,
Bhagwat
N
,
Pastore
A
, et al
.
PRMT5 inhibition modulates E2F1 methylation and gene-regulatory networks leading to therapeutic efficacy in JAK2(V617F)-mutant MPN
.
Cancer Discov
.
2020
. ;
10
(
11
):
1742
-
1757
.
26.
Gerhart
SV
,
Kellner
WA
,
Thompson
C
, et al
.
Activation of the p53-MDM4 regulatory axis defines the anti-tumour response to PRMT5 inhibition through its role in regulating cellular splicing
.
Sci Rep
.
2018
. ;
8
(
1
):
9711
.
27.
Wu
Q
,
Schapira
M
,
Arrowsmith
CH
,
Barsyte-Lovejoy
D
.
Protein arginine methylation: from enigmatic functions to therapeutic targeting
.
Nat Rev Drug Discov
.
2021
. ;
20
(
7
):
509
-
530
.
28.
Snyder
KJ
,
Zitzer
NC
,
Gao
Y
, et al
.
PRMT5 regulates T cell interferon response and is a target for acute graft-versus-host disease
.
JCI Insight
.
2020
. ;
5
(
8
):
e131099
.
29.
Bonday
ZQ
,
Cortez
GS
,
Grogan
MJ
, et al
.
LLY-283, a potent and selective inhibitor of arginine methyltransferase 5, PRMT5, with antitumor activity
.
ACS Med Chem Lett
.
2018
. ;
9
(
7
):
612
-
617
.
30.
Kryukov
GV
,
Wilson
FH
,
Ruth
JR
, et al
.
MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells
.
Science
.
2016
. ;
351
(
6278
):
1214
-
1218
.
31.
Marjon
K
,
Cameron
MJ
,
Quang
P
, et al
.
MTAP deletions in cancer create vulnerability to targeting of the MAT2A/PRMT5/RIOK1 axis
.
Cell Rep
.
2016
. ;
15
(
3
):
574
-
587
.
32.
Mavrakis
KJ
,
McDonald
ER
,
Schlabach
MR
, et al
.
Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5
.
Science
.
2016
. ;
351
(
6278
):
1208
-
1213
.
33.
Marce
S
,
Balague
O
,
Colomo
L
, et al
.
Lack of methylthioadenosine phosphorylase expression in mantle cell lymphoma is associated with shorter survival: implications for a potential targeted therapy
.
Clin Cancer Res
.
2006
. ;
12
(
12
):
3754
-
3761
.
34.
Hanel
W
,
Lata
P
,
Youssef
Y
, et al
.
A sumoylation program is essential for maintaining the mitotic fidelity in proliferating mantle cell lymphoma cells
.
Exp Hematol Oncol
.
2022
. ;
11
(
1
):
40
.
35.
Bairoch
A
.
The Cellosaurus, a cell-line knowledge resource
.
J Biomol Tech
.
2018
. ;
29
(
2
):
25
-
38
.
36.
Subramanian
A
,
Tamayo
P
,
Mootha
VK
, et al
.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
.
Proc Natl Acad Sci U S A
.
2005
. ;
102
(
43
):
15545
-
15550
.
37.
Chiron
D
,
Bellanger
C
,
Papin
A
, et al
.
Rational targeted therapies to overcome microenvironment-dependent expansion of mantle cell lymphoma
.
Blood
.
2016
. ;
128
(
24
):
2808
-
2818
.
38.
Malcikova
J
,
Tausch
E
,
Rossi
D
, et al;
European Research Initiative on Chronic Lymphocytic Leukemia ERIC — TP53 network
.
ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia-update on methodological approaches and results interpretation
.
Leukemia
.
2018
. ;
32
(
5
):
1070
-
1080
.
39.
Filby
A
,
Begum
J
,
Jalal
M
,
Day
W
.
Appraising the suitability of succinimidyl and lipophilic fluorescent dyes to track proliferation in non-quiescent cells by dye dilution
.
Methods
.
2015
. ;
82
:
29
-
37
.
40.
Chen
L
,
Juszczynski
P
,
Takeyama
K
,
Aguiar
RC
,
Shipp
MA
.
Protein tyrosine phosphatase receptor-type O truncated (PTPROt) regulates SYK phosphorylation, proximal B-cell-receptor signaling, and cellular proliferation
.
Blood
.
2006
. ;
108
(
10
):
3428
-
3433
.
41.
Alinari
L
,
Mahasenan
KV
,
Yan
F
, et al
.
Selective inhibition of protein arginine methyltransferase 5 blocks initiation and maintenance of B-cell transformation
.
Blood
.
2015
. ;
125
(
16
):
2530
-
2543
.
42.
Song
HK
,
Kim
J
,
Lee
JS
, et al
.
Pik3ip1 modulates cardiac hypertrophy by inhibiting PI3K pathway
.
PLoS One
.
2015
. ;
10
(
3
):
e0122251
.
43.
Kawase
T
,
Ohki
R
,
Shibata
T
, et al
.
PH domain-only protein PHLDA3 is a p53-regulated repressor of Akt
.
Cell
.
2009
. ;
136
(
3
):
535
-
550
.
44.
Wei
H
,
Wang
B
,
Miyagi
M
, et al
.
PRMT5 dimethylates R30 of the p65 subunit to activate NF-kappaB
.
Proc Natl Acad Sci U S A
.
2013
. ;
110
(
33
):
13516
-
13521
.
45.
Zhang
L
,
Guo
H
,
Zhang
H
, et al
.
Genetically defined metabolic targets overcome ibrutinib resistance in mantle cell lymphoma [abstract]
.
Blood
.
2019
. ;
134
(
suppl 1
). Abstract 395.
46.
Zhang
L
,
Yao
Y
,
Zhang
S
, et al
.
Metabolic reprogramming toward oxidative phosphorylation identifies a therapeutic target for mantle cell lymphoma
.
Sci Transl Med
.
2019
. ;
11
(
491
):
eaau1167
.
47.
Ma
J
,
Lu
P
,
Guo
A
, et al
.
Characterization of ibrutinib-sensitive and -resistant mantle lymphoma cells
.
Br J Haematol
.
2014
. ;
166
(
6
):
849
-
861
.
48.
Zhao
X
,
Lwin
T
,
Silva
A
, et al
.
Unification of de novo and acquired ibrutinib resistance in mantle cell lymphoma
.
Nat Commun
.
2017
. ;
8
:
14920
.
49.
Fernandez
V
,
Hartmann
E
,
Ott
G
,
Campo
E
,
Rosenwald
A
.
Pathogenesis of mantle-cell lymphoma: all oncogenic roads lead to dysregulation of cell cycle and DNA damage response pathways
.
J Clin Oncol
.
2005
. ;
23
(
26
):
6364
-
6369
.
50.
Zhu
F
,
Guo
H
,
Bates
PD
, et al
.
PRMT5 is upregulated by B-cell receptor signaling and forms a positive-feedback loop with PI3K/AKT in lymphoma cells
.
Leukemia
.
2019
. ;
33
(
12
):
2898
-
2911
.
You do not currently have access to this content.
Sign in via your Institution