• Using the largest WGS data set, we show biallelic and double-hit events plus novel rare drivers are enriched in relapsed/refractory myeloma.

  • EZH2, PIGO, and DUOX2 are novel, nearly mutually exclusive candidate driver genes in relapse/refractory myeloma.

Large-scale analyses of genomic data from patients with newly diagnosed multiple myeloma (ndMM) have been undertaken, however, large-scale analysis of relapsed/refractory MM (rrMM) has not been performed. We hypothesize that somatic variants chronicle the therapeutic exposures and clonal structure of myeloma from ndMM to rrMM stages. We generated whole-genome sequencing (WGS) data from 418 tumors (386 patients) derived from 6 rrMM clinical trials and compared them with WGS from 198 unrelated patients with ndMM in a population-based case-control fashion. We identified significantly enriched events at the rrMM stage, including drivers (DUOX2, EZH2, TP53), biallelic inactivation (TP53), noncoding mutations in bona fide drivers (TP53BP1, BLM), copy number aberrations (CNAs; 1qGain, 17pLOH), and double-hit events (Amp1q-ISS3, 1qGain-17p loss-of-heterozygosity). Mutational signature analysis identified a subclonal defective mismatch repair signature enriched in rrMM and highly active in high mutation burden tumors, a likely feature of therapy-associated expanding subclones. Further analysis focused on the association of genomic aberrations enriched at different stages of resistance to immunomodulatory agent (IMiD)–based therapy. This analysis revealed that TP53, DUOX2, 1qGain, and 17p loss-of-heterozygosity increased in prevalence from ndMM to lenalidomide resistant (LENR) to pomalidomide resistant (POMR) stages, whereas enrichment of MAML3 along with immunoglobulin lambda (IGL) and MYC translocations distinguished POM from the LEN subgroup. Genomic drivers associated with rrMM are those that confer clonal selective advantage under therapeutic pressure. Their role in therapy evasion should be further evaluated in longitudinal patient samples, to confirm these associations with the evolution of clinical resistance and to identify molecular subsets of rrMM for the development of targeted therapies.

1.
Jafari
M
,
Guan
Y
,
Wedge
DC
,
Ansari-Pour
N
.
Re-evaluating experimental validation in the Big Data Era: a conceptual argument
.
Genome Biol
.
2021
. ;
22
(
1
):
71
.
2.
Walker
BA
,
Mavrommatis
K
,
Wardell
CP
, et al
.
Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma
.
Blood
.
2018
. ;
132
(
6
):
587
-
597
.
3.
Hoang
PH
,
Cornish
AJ
,
Sherborne
AL
, et al
.
An enhanced genetic model of relapsed IGH-translocated multiple myeloma evolutionary dynamics
.
Blood Cancer J
.
2020
. ;
10
(
10
):
101
.
4.
Hoang
PH
,
Dobbins
SE
,
Cornish
AJ
, et al
.
Whole-genome sequencing of multiple myeloma reveals oncogenic pathways are targeted somatically through multiple mechanisms
.
Leukemia
.
2018
. ;
32
(
11
):
2459
-
2470
.
5.
Maura
F
,
Bolli
N
,
Angelopoulos
N
, et al
.
Genomic landscape and chronological reconstruction of driver events in multiple myeloma
.
Nat Commun
.
2019
. ;
10
(
1
):
3835
.
6.
Gooding
S
,
Ansari-Pour
N
,
Kazeroun
MH
, et al
.
Loss of COP9-signalosome genes at 2q37 is associated with IMiD agent resistance in multiple myeloma
.
Blood
.
2022
. ;
140
(
16
):
1816
-
1821
.
7.
Gooding
S
,
Ansari-Pour
N
,
Towfic
F
, et al
.
Multiple cereblon genetic changes are associated with acquired resistance to lenalidomide or pomalidomide in multiple myeloma
.
Blood
.
2021
. ;
137
(
2
):
232
-
237
.
8.
Ortiz-Estevez
M
,
Towfic
F
,
Flynt
E
, et al
.
Integrative multi-omics identifies high risk multiple myeloma subgroup associated with significant DNA loss and dysregulated DNA repair and cell cycle pathways
.
BMC Med Genomics
.
2021
. ;
14
(
1
):
295
.
9.
Barrio
S
,
Stuhmer
T
,
Da-Via
M
, et al
.
Spectrum and functional validation of PSMB5 mutations in multiple myeloma
.
Leukemia
.
2019
. ;
33
(
2
):
447
-
456
.
10.
Samur
MK
,
Fulciniti
M
,
Aktas Samur
A
, et al
.
Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma
.
Nat Commun
.
2021
. ;
12
(
1
):
868
.
11.
Samur
MK
,
Aktas Samur
A
,
Fulciniti
M
, et al
.
Genome-wide somatic alterations in multiple myeloma reveal a superior outcome group
.
J Clin Oncol
.
2020
. ;
38
(
27
):
3107
-
3118
.
12.
Wang
K
,
Li
M
,
Hakonarson
H
.
ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data
.
Nucleic Acids Res
.
2010
. ;
38
(
16
):
e164
.
13.
Nik-Zainal
S
,
Van Loo
P
,
Wedge
DC
, et al
.
The life history of 21 breast cancers
.
Cell
.
2012
. ;
149
(
5
):
994
-
1007
.
14.
Rabbie
R
,
Ansari-Pour
N
,
Cast
O
, et al
.
Multi-site clonality analysis uncovers pervasive heterogeneity across melanoma metastases
.
Nat Commun
.
2020
. ;
11
(
1
):
4306
.
15.
Zapata
L
,
Susak
H
,
Drechsel
O
,
Friedlander
MR
,
Estivill
X
,
Ossowski
S
.
Signatures of positive selection reveal a universal role of chromatin modifiers as cancer driver genes
.
Sci Rep
.
2017
. ;
7
(
1
):
13124
.
16.
Vogelstein
B
,
Papadopoulos
N
,
Velculescu
VE
,
Zhou
S
,
Diaz
LA
,
Kinzler
KW
.
Cancer genome landscapes
.
Science
.
2013
. ;
339
(
6127
):
1546
-
1558
.
17.
Tsherniak
A
,
Vazquez
F
,
Montgomery
PG
, et al
.
Defining a cancer dependency map
.
Cell
.
2017
. ;
170
(
3
):
564
-
576.e16
.
18.
Alexandrov
LB
,
Kim
J
,
Haradhvala
NJ
, et al
.
The repertoire of mutational signatures in human cancer
.
Nature
.
2020
. ;
578
(
7793
):
94
-
101
.
19.
Rosales
RA
,
Drummond
RD
,
Valieris
R
,
Dias-Neto
E
,
da Silva
IT
.
signeR: an empirical Bayesian approach to mutational signature discovery
.
Bioinformatics
.
2017
. ;
33
(
1
):
8
-
16
.
20.
Rustad
EH
,
Nadeu
F
,
Angelopoulos
N
, et al
.
mmsig: a fitting approach to accurately identify somatic mutational signatures in hematological malignancies
.
Commun Biol
.
2021
. ;
4
(
1
):
424
.
21.
Maura
F
,
Degasperi
A
,
Nadeu
F
, et al
.
A practical guide for mutational signature analysis in hematological malignancies
.
Nat Commun
.
2019
. ;
10
(
1
):
2969
.
22.
Chen
X
,
Schulz-Trieglaff
O
,
Shaw
R
, et al
.
Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications
.
Bioinformatics
.
2015
. ;
32
(
8
):
1220
-
1222
.
23.
Team RC
. R: a language and environment for statistical computing.
2013
. .
24.
Bolli
N
,
Avet-Loiseau
H
,
Wedge
DC
, et al
.
Heterogeneity of genomic evolution and mutational profiles in multiple myeloma
.
Nat Commun
.
2014
. ;
5
:
2997
.
25.
Keats
JJ
,
Speyer
G
,
Christofferson
A
, et al
.
Molecular predictors of outcome and drug response in multiple myeloma: an interim analysis of the Mmrf CoMMpass study
.
Blood
.
2016
. ;
128
(
22
):
194
.
26.
Sanchez-Vega
F
,
Mina
M
,
Armenia
J
, et al
.
Oncogenic signaling pathways in The Cancer Genome Atlas
.
Cell
.
2018
. ;
173
(
2
):
321
-
337.e310
.
27.
Martello
M
,
Poletti
A
,
Borsi
E
, et al
.
Clonal and subclonal TP53 molecular impairment is associated with prognosis and progression in multiple myeloma
.
Blood Cancer J
.
2022
. ;
12
(
1
):
1
-
7
.
28.
Boyle
EM
,
Ashby
C
,
Tytarenko
RG
, et al
.
BRAF and DIS3 mutations associate with adverse outcome in a long-term follow-up of patients with multiple myeloma
.
Clin Cancer Res
.
2020
. ;
26
(
10
):
2422
-
2432
.
29.
Szklarczyk
D
,
Gable
AL
,
Nastou
KC
, et al
.
The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets
.
Nucleic Acids Res
.
2021
. ;
49
(
D1
):
D605
-
D612
.
30.
Xie
Z
,
Bailey
A
,
Kuleshov
MV
, et al
.
Gene set knowledge discovery with Enrichr
.
Curr Protoc
.
2021
. ;
1
(
3
):
e90
.
31.
Weinhold
N
,
Ashby
C
,
Rasche
L
, et al
.
Clonal selection and double-hit events involving tumor suppressor genes underlie relapse in myeloma
.
Blood
.
2016
. ;
128
(
13
):
1735
-
1744
.
32.
Hassan
HM
,
Isovic
M
,
Underhill
MT
,
Torchia
J
.
TDG is a novel tumor suppressor of liver malignancies
.
Mol Cell Oncol
.
2020
. ;
7
(
4
):
1768819
.
33.
Ansari-Pour
N
,
Zheng
Y
,
Yoshimatsu
TF
, et al
.
Whole-genome analysis of Nigerian patients with breast cancer reveals ethnic-driven somatic evolution and distinct genomic subtypes
.
Nat Commun
.
2021
. ;
12
(
1
):
6946
.
34.
Squatrito
M
,
Vanoli
F
,
Schultz
N
,
Jasin
M
,
Holland
EC
.
53BP1 is a haploinsufficient tumor suppressor and protects cells from radiation response in glioma
.
Cancer Res
.
2012
. ;
72
(
20
):
5250
-
5260
.
35.
Cottini
F
,
Hideshima
T
,
Suzuki
R
, et al
.
Synthetic lethal approaches exploiting DNA damage in aggressive myeloma
.
Cancer Discov
.
2015
. ;
5
(
9
):
972
-
987
.
36.
Yao
J
,
Huang
A
,
Zheng
X
, et al
.
53BP1 loss induces chemoresistance of colorectal cancer cells to 5-fluorouracil by inhibiting the ATM-CHK2-P53 pathway
.
J Cancer Res Clin Oncol
.
2017
. ;
143
(
3
):
419
-
431
.
37.
Barwick
BG
,
Neri
P
,
Bahlis
NJ
, et al
.
Multiple myeloma immunoglobulin lambda translocations portend poor prognosis
.
Nat Commun
.
2019
. ;
10
(
1
):
1911
.
38.
Bergsagel
PL
,
Kuehl
WM
.
Chromosome translocations in multiple myeloma
.
Oncogene
.
2001
. ;
20
(
40
):
5611
-
5622
.
39.
Misund
K
,
Keane
N
,
Stein
CK
, et al
.
MYC dysregulation in the progression of multiple myeloma
.
Leukemia
.
2020
. ;
34
(
1
):
322
-
326
.
40.
Boyd
KD
,
Ross
FM
,
Walker
BA
, et al
.
Mapping of chromosome 1p deletions in myeloma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions associated with adverse survival
.
Clin Cancer Res
.
2011
. ;
17
(
24
):
7776
-
7784
.
41.
Wu
KL
,
Beverloo
B
,
Lokhorst
HM
, et al
.
Abnormalities of chromosome 1p/q are highly associated with chromosome 13/13q deletions and are an adverse prognostic factor for the outcome of high-dose chemotherapy in patients with multiple myeloma
.
Br J Haematol
.
2007
. ;
136
(
4
):
615
-
623
.
42.
Walker
BA
,
Mavrommatis
K
,
Wardell
CP
, et al
.
A high-risk, double-hit, group of newly diagnosed myeloma identified by genomic analysis
.
Leukemia
.
2019
. ;
33
(
1
):
159
-
170
.
43.
Rustad
EH
,
Yellapantula
V
,
Leongamornlert
D
, et al
.
Timing the initiation of multiple myeloma
.
Nat Commun
.
2020
. ;
11
(
1
):
1917
.
44.
Giesen
N
,
Paramasivam
N
,
Toprak
UH
, et al
.
Comprehensive genomic analysis of refractory multiple myeloma reveals a complex mutational landscape associated with drug resistance and novel therapeutic vulnerabilities
.
Haematologica
.
2022
. ;
107
(
8
):
1891
-
1901
.
45.
Jones
JR
,
Weinhold
N
,
Ashby
C
, et al
.
Clonal evolution in myeloma: the impact of maintenance lenalidomide and depth of response on the genetics and sub-clonal structure of relapsed disease in uniformly treated newly diagnosed patients
.
Haematologica
.
2019
. ;
104
(
7
):
1440
-
1450
.
46.
Zhang
X
,
Han
J
,
Feng
L
, et al
.
DUOX2 promotes the progression of colorectal cancer cells by regulating the AKT pathway and interacting with RPL3
.
Carcinogenesis
.
2021
. ;
42
(
1
):
105
-
117
.
47.
Ingram
C.J.E.
,
Ekong
R
,
Ansari-Pour
N
,
Bradman
N
,
Swallow
DM
.
Group-based pharmacogenetic prediction: is it feasible and do current NHS England ethnic classifications provide appropriate data?
.
Pharmacogenomics J
.
2021
. ;
21
(
1
):
47
-
59
.
48.
Germano
G
,
Amirouchene-Angelozzi
N
,
Rospo
G
,
Bardelli
A
.
The clinical impact of the genomic landscape of mismatch repair-deficient cancers
.
Cancer Discov
.
2018
. ;
8
(
12
):
1518
-
1528
.
49.
Miyashita
K
,
Fujii
K
,
Suehiro
Y
, et al
.
Heterochronous occurrence of microsatellite instability in multiple myeloma - an implication for a role of defective DNA mismatch repair in myelomagenesis
.
Leuk Lymphoma
.
2018
. ;
59
(
10
):
2454
-
2459
.
50.
Begum
R
,
Martin
SA
.
Targeting mismatch repair defects: a novel strategy for personalized cancer treatment
.
DNA Repair
.
2016
. ;
38
:
135
-
139
.
51.
Martin
SA
,
Lord
CJ
,
Ashworth
A
.
Therapeutic targeting of the DNA mismatch repair pathway
.
Clin Cancer Res
.
2010
. ;
16
(
21
):
5107
-
5113
.
52.
Misund
K
,
Hofste Op Bruinink
D
,
Coward
E
, et al
.
Clonal evolution after treatment pressure in multiple myeloma: heterogenous genomic aberrations and transcriptomic convergence
.
Leukemia
.
2022
. ;
36
(
7
):
1887
-
1897
.
53.
Vo
JN
,
Wu
YM
,
Mishler
J
, et al
.
The genetic heterogeneity and drug resistance mechanisms of relapsed refractory multiple myeloma
.
Nat Commun
.
2022
. ;
13
(
1
):
3750
.
You do not currently have access to this content.
Sign in via your Institution