• Comparative transcriptomics and genome-wide CRISPR screens identify conserved transcriptional programs and dependencies in EVI1-driven AML.

  • ERG is the key transcriptional target of EVI1 that is required and sufficient for maintaining an immature differentiation state.

Chromosomal rearrangements involving the MDS1 and EVI1 complex locus (MECOM) on chromosome 3q26 define an aggressive subtype of acute myeloid leukemia (AML) that is associated with chemotherapy resistance and dismal prognosis. Established treatment regimens commonly fail in these patients, therefore, there is an urgent need for new therapeutic concepts that will require a better understanding of the molecular and cellular functions of the ecotropic viral integration site 1 (EVI1) oncogene. To characterize gene regulatory functions of EVI1 and associated dependencies in AML, we developed experimentally tractable human and murine disease models, investigated the transcriptional consequences of EVI1 withdrawal in vitro and in vivo, and performed the first genome-wide CRISPR screens in EVI1-dependent AML. By integrating conserved transcriptional targets with genetic dependency data, we identified and characterized the ETS transcription factor ERG as a direct transcriptional target of EVI1 that is aberrantly expressed and selectively required in both human and murine EVI1–driven AML. EVI1 controls the expression of ERG and occupies a conserved intragenic enhancer region in AML cell lines and samples from patients with primary AML. Suppression of ERG induces terminal differentiation of EVI1-driven AML cells, whereas ectopic expression of ERG abrogates their dependence on EVI1, indicating that the major oncogenic functions of EVI1 are mediated through aberrant transcriptional activation of ERG. Interfering with this regulatory axis may provide entry points for the development of rational targeted therapies.

1.
Lugthart
S
,
Gröschel
S
,
Beverloo
HB
, et al
.
Clinical, molecular, and prognostic significance of WHO type inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and various other 3q abnormalities in acute myeloid leukemia
.
J Clin Oncol
.
2010
;
28
(
24
):
3890
-
3898
.
2.
Papaemmanuil
E
,
Gerstung
M
,
Bullinger
L
, et al
.
Genomic classification and prognosis in acute myeloid leukemia
.
N Engl J Med
.
2016
;
374
(
23
):
2209
-
2221
.
3.
Wu
X
,
Wang
H
,
Deng
J
, et al
.
Prognostic significance of the EVI1 gene expression in patients with acute myeloid leukemia: a meta-analysis
.
Ann Hematol
.
2019
;
98
(
11
):
2485
-
2496
.
4.
Mucenski
ML
,
Taylor
BA
,
Ihle
JN
, et al
.
Identification of a common ecotropic viral integration site, Evi-1, in the DNA of AKXD murine myeloid tumors
.
Mol Cell Biol
.
1988
;
8
(
1
):
301
-
308
.
5.
Fears
S
,
Mathieu
C
,
Zeleznik-Le
N
, et al
.
Intergenic splicing of MDS1 and EVI1 occurs in normal tissues as well as in myeloid leukemia and produces a new member of the PR domain family
.
Proc Natl Acad Sci U S A
.
1996
;
93
(
4
):
1642
-
1647
.
6.
Kataoka
K
,
Sato
T
,
Yoshimi
A
, et al
.
Evi1 is essential for hematopoietic stem cell self-renewal, and its expression marks hematopoietic cells with long-term multilineage repopulating activity
.
J Exp Med
.
2011
;
208
(
12
):
2403
-
2416
.
7.
Zhang
Y
,
Stehling-sun
S
,
Lezon-geyda
K
, et al
.
PR-domain – containing Mds1-Evi1 is critical for long-term hematopoietic stem cell function
.
Blood
.
2011
;
118
(
14
):
3853
-
3861
.
8.
Arber
DA
,
Orazi
A
,
Hasserjian
R
, et al
.
The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia
.
Blood
.
2016
;
127
(
20
):
2391
-
2405
.
9.
Yamazaki
H
,
Suzuki
M
,
Otsuki
A
, et al
.
A remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3)(q21;q26) by activating EVI1 expression
.
Cancer Cell
.
2014
;
25
(
4
):
415
-
427
.
10.
Gröschel
S
,
Sanders
MA
,
Hoogenboezem
R
, et al
.
A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in Leukemia
.
Cell
.
2014
;
157
(
2
):
369
-
381
.
11.
Smeenk
L
,
Ottema
S
,
Mulet-Lazaro
R
, et al
.
Selective requirement of MYB for oncogenic hyperactivation of a translocated enhancer in leukemia
.
Cancer Discov
.
2021
;
11
(
11
):
2868
-
2883
.
12.
Kiehlmeier
S
,
Rafiee
MR
,
Bakr
A
, et al
.
Identification of therapeutic targets of the hijacked super-enhancer complex in EVI1-rearranged leukemia
.
Leukemia
.
2021
;
35
(
11
):
3127
-
3138
.
13.
Ottema
S
,
Mulet-Lazaro
R
,
Erpelinck-Verschueren
C
, et al
.
The leukemic oncogene EVI1 hijacks a MYC super-enhancer by CTCF-facilitated loops
.
Nat Commun
.
2021
;
12
(
5679
):
1
-
13
.
14.
Russell
M
,
List
A
,
Greenberg
P
, et al
.
Expression of EVI1 in myelodysplastic syndromes and other hematologic malignancies without 3q26 translocations
.
Blood
.
1994
;
84
(
4
):
1243
-
1248
.
15.
Gröschel
S
,
Schlenk
RF
,
Engelmann
J
, et al
.
Deregulated expression of EVI1 defines a poor prognostic subset of MLL-rearranged acute myeloid leukemias: a study of the German-Austrian Acute Myeloid Leukemia Study Group and the Dutch-Belgian-Swiss HOVON/SAKK Cooperative Group
.
J Clin Oncol
.
2013
;
31
(
1
):
95
-
103
.
16.
Stavropoulou
V
,
Kaspar
S
,
Brault
L
, et al
.
MLL-AF9 expression in hematopoietic stem cells drives a highly invasive AML expressing EMT-related genes linked to poor outcome
.
Cancer Cell
.
2016
;
30
(
1
):
43
-
58
.
17.
Izutsu
K
,
Kurokawa
M
,
Imai
Y
, et al
.
The corepressor CtBP interacts with Evi-1 to repress transforming growth factor β signaling
.
Blood
.
2001
;
97
(
9
):
2815
-
2822
.
18.
Turner
J
,
Crossley
M
.
Cloning and characterization of mCtBP2, a co-repressor that associates with basic Kruppel-like factor and other mammalian transcriptional regulators
.
EMBO J
.
1998
;
17
(
17
):
5129
-
5140
.
19.
Ayoub
E
,
Wilson
MP
,
McGrath
KE
, et al
.
EVI1 overexpression reprograms hematopoiesis via upregulation of Spi1 transcription
.
Nat Commun
.
2018
;
9
(
1
):
1
-
12
.
20.
Wilson
M
,
Tsakraklides
V
,
Tran
M
, et al
.
EVI1 interferes with myeloid maturation via transcriptional repression of Cebpa, via binding to two far downstream regulatory elements
.
J Biol Chem
.
2016
;
291
(
26
):
13591
-
13607
.
21.
Cai
SF
,
Chu
SH
,
Goldberg
AD
, et al
.
Leukemia cell of origin influences apoptotic priming and sensitivity to LSD1 inhibition
.
Cancer Discov
.
2020
;
10
(
10
):
1500
-
1513
.
22.
Wang
T
,
Birsoy
K
,
Hughes
NW
, et al
.
Identification and characterization of essential genes in the human genome
.
Science
.
2015
;
350
(
6264
):
1096
-
1101
.
23.
Wang
T
,
Yu
H
,
Hughes
NW
, et al
.
Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic Ras
.
Cell
.
2017
;
168
(
5
):
1
-
14
.
24.
Aguirre
AJ
,
Meyers
RM
,
Weir
BA
, et al
.
Genomic copy number dictates a gene-independent cell response to CRISPR-Cas9 targeting
.
Cancer Discov
.
2016
;
6
(
8
):
914
-
929
.
25.
Tzelepis
K
,
Koike-Yusa
H
,
De Braekeleer
E
, et al
.
A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia
.
Cell Rep
.
2016
;
17
(
4
):
1193
-
1205
.
26.
Meyers
RM
,
Bryan
JG
,
McFarland
JM
, et al
.
Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells
.
Nat Genet
.
2017
;
49
(
12
):
1779
-
1784
.
27.
Morgens
DW
,
Wainberg
M
,
Boyle
EA
, et al
.
Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens
.
Nat Commun
.
2017
;
8
(
1
):
15178
.
28.
Behan
FM
,
Iorio
F
,
Picco
G
, et al
.
Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens
.
Nature
.
2019
;
568
(
7753
):
511
-
516
.
29.
McFarland
JM
,
Ho
ZV
,
Kugener
G
, et al
.
Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration
.
Nat Commun
.
2018
;
9
(
1
):
1
-
13
.
30.
Glass
C
,
Wuertzer
C
,
Cui
X
, et al
.
Global identification of EVI1 target genes in acute myeloid leukemia
.
PLoS One
.
2013
;
8
(
6
):
e67134
.
31.
Maicas
M
,
Vázquez
I
,
Vicente
C
, et al
.
Functional characterization of the promoter region of the human EVI1 gene in acute myeloid leukemia: RUNX1 and ELK1 directly regulate its transcription
.
Oncogene
.
2013
;
32
(
16
):
2069
-
2078
.
32.
Fenouille
N
,
Bassil
CF
,
Ben-Sahra
I
, et al
.
The creatine kinase pathway is a metabolic vulnerability in EVI1-positive acute myeloid leukemia
.
Nat Med
.
2017
;
23
(
3
):
301
-
313
.
33.
Hamaguchi
H
,
Suzukawa
K
,
Nagata
K
, et al
.
Establishment of a novel human myeloid leukaemia cell line (HNT-34)with t(3;3)(q21;q26), t(9;22)(q34;q11) and the expression of EVI1 gene, P210 and P190 BCR/ABL chimaeric transcripts from a patient with AML after MDS with 3q21q26 syndrome
.
Br J Haematol
.
1997
;
98
(
2
):
399
-
407
.
34.
de Almeida
M
,
Hinterndorfer
M
,
Brunner
H
, et al
.
AKIRIN2 controls the nuclear import of proteasomes in vertebrates
.
Nature
.
2021
;
599
(
7885
):
491
-
496
.
35.
Michlits
G
,
Jude
J
,
Hinterndorfer
M
, et al
.
Multilayered VBC score predicts sgRNAs that efficiently generate loss-of-function alleles
.
Nat Methods
.
2020
;
17
(
7
):
708
-
716
.
36.
Yokoyama
A
,
Somervaille
TCP
,
Smith
KS
, et al
.
The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis
.
Cell
.
2005
;
123
(
2
):
207
-
218
.
37.
Lu
B
,
Klingbeil
O
,
Tarumoto
Y
, et al
.
A transcription factor addiction in leukemia imposed by the MLL promoter sequence
.
Cancer Cell
.
2018
;
34
(
6
):
970
-
981.e8
.
38.
Tarumoto
Y
,
Lu
B
,
Somerville
TDD
, et al
.
LKB1, salt-inducible kinases, and MEF2C are linked dependencies in acute myeloid leukemia
.
Mol Cell
.
2018
;
69
(
6
):
1017
-
1027.e6
.
39.
Ohlsson
E
,
Hasemann
MS
,
Willer
A
, et al
.
Initiation of MLL-rearranged AML is dependent on C/EBPa
.
J Exp Med
.
2014
;
211
(
1
):
5
-
13
.
40.
Klaeger
S
,
Heinzlmeir
S
,
Wilhelm
M
, et al
.
The target landscape of clinical kinase drugs
.
Science
.
2017
;
358
(
6367
):
eaan4368
.
41.
Bard-Chapeau
EA
,
Gunaratne
J
,
Kumar
P
, et al
.
EVI1 oncoprotein interacts with a large and complex network of proteins and integrates signals through protein phosphorylation
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
31
):
E2885
-
E2894
.
42.
Knudsen
KJ
,
Rehn
M
,
Hasemann
MS
, et al
.
ERG promotes the maintenance of hematopoietic stem cells by restricting their differentiation
.
Genes Dev
.
2015
;
29
(
18
):
1915
-
1929
.
43.
Unnikrishnan
A
,
Guan
YF
,
Huang
Y
, et al
.
A quantitative proteomics approach identifies ETV6 and IKZF1 as new regulators of an ERG-driven transcriptional network
.
Nucleic Acids Res
.
2016
;
44
(
22
):
10644
-
10661
.
44.
Cuenco
GM
,
Nucifora
G
,
Ren
R
.
Human AML1/MDS1/EVI1 fusion protein induces an acute myelogenous leukemia (AML) in mice: a model for human AML
.
Proc Natl Acad Sci U S A
.
2000
;
97
(
4
):
1760
-
1765
.
45.
Nakamura
Y
,
Ichikawa
M
,
Oda
H
, et al
.
RUNX1-EVI1 induces dysplastic hematopoiesis and acute leukemia of the megakaryocytic lineage in mice
.
Leuk Res
.
2018
;
74
:
14
-
20
.
46.
Buonamici
S
,
Li
D
,
Chi
Y
, et al
.
EVI1 induces myelodysplastic syndrome in mice
.
J Clin Invest
.
2004
;
114
(
5
):
713
-
719
.
47.
Zuber
J
,
Radtke
I
,
Pardee
TS
, et al
.
Mouse models of human AML accurately predict chemotherapy response
.
Genes Dev
.
2009
;
23
(
7
):
877
-
889
.
48.
Schmoellerl
J
,
Barbosa
IAM
,
Eder
T
, et al
.
CDK6 is an essential direct target of NUP98 fusion proteins in acute myeloid leukemia
.
Blood
.
2020
;
136
(
4
):
387
-
400
.
49.
Li
Q
,
Haigis
KM
,
McDaniel
A
, et al
.
Hematopoiesis and leukemogenesis in mice expressing oncogenic NrasG12D from the endogenous locus
.
Blood
.
2011
;
117
(
6
):
2022
-
2032
.
50.
Ottina
E
,
Peperzak
V
,
Schoeler
K
, et al
.
DNA-binding of the Tet-transactivator curtails antigen-induced lymphocyte activation in mice
.
Nat Commun
.
2017
;
8
(
1
):
1028
.
51.
Laurenti
E
,
Frelin
C
,
Xie
S
, et al
.
CDK6 levels regulate quiescence exit in human hematopoietic stem cells
.
Cell Stem Cell
.
2015
;
16
(
3
):
302
-
313
.
52.
Schleicher
R
,
Hoelbl-Kovacic
A
,
Bellutti
F
, et al
.
CDK6 as a key regulator of hematopoietic and leukemic stem cell activation
.
Blood
.
2015
;
125
(
1
):
90
-
101
.
53.
Klijn
C
,
Durinck
S
,
Stawiski
EW
, et al
.
A comprehensive transcriptional portrait of human cancer cell lines
.
Nat Biotechnol
.
2015
;
33
(
3
):
306
-
312
.
54.
Lavallée
V-P
,
Gendron
P
,
Lemieux
SS
, et al
.
EVI1-rearranged acute myeloid leukemias are characterized by distinct molecular alterations
.
Blood
.
2015
;
125
(
1
):
140
-
143
.
55.
Maiga
A
,
Lemieux
S
,
Pabst
C
, et al
.
Transcriptome analysis of G protein-coupled receptors in distinct genetic subgroups of acute myeloid leukemia: identification of potential disease-specific targets
.
Blood Cancer J
.
2016
;
6
(
e431
):
1
-
9
.
56.
Pabst
C
,
Krosl
J
,
Fares
I
, et al
.
Identification of small molecules that support human leukemia stem cell activity ex vivo
.
Nat Methods
.
2014
;
11
(
4
):
436
-
442
.
57.
Celton
M
,
Forest
A
,
Gosse
G
, et al
.
Epigenetic regulation of GATA2 and its impact on normal karyotype acute myeloid leukemia
.
Leukemia
.
2014
;
28
(
8
):
1617
-
1626
.
58.
Zuber
J
,
Shi
J
,
Wang
E
, et al
.
RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia
.
Nature
.
2011
;
478
(
7370
):
524
-
528
.
59.
Tzelepis
K
,
De Braekeleer
E
,
Aspris
D
, et al
.
SRPK1 maintains acute myeloid leukemia through effects on isoform usage of epigenetic regulators including BRD4
.
Nat Commun
.
2018
;
9
(
5378
):
1
-
13
.
60.
Tarumoto
Y
,
Lin
S
,
Wang
J
, et al
.
Salt-inducible kinase inhibition suppresses acute myeloid leukemia progression in vivo
.
Blood
.
2020
;
135
(
1
):
56
-
70
.
61.
Kucinski
I
,
Wilson
NK
,
Hannah
R
, et al
.
Interactions between lineage-associated transcription factors govern haematopoietic progenitor states
.
EMBO J
.
2020
;
39
(
24
):
1
-
23
.
62.
Roe
JS
,
Mercan
F
,
Rivera
K
,
Pappin
DJ
,
Vakoc
CR
.
BET bromodomain inhibition suppresses the function of hematopoietic transcription factors in acute myeloid leukemia
.
Mol Cell
.
2015
;
58
(
6
):
1028
-
1039
.
63.
Kustikova
OS
,
Schwarzer
A
,
Stahlhut
M
, et al
.
Activation of Evi1 inhibits cell cycle progression and differentiation of hematopoietic progenitor cells
.
Leukemia
.
2013
;
27
(
5
):
1127
-
1138
.
64.
Thomas
ME
,
Abdelhamed
S
,
Hiltenbrand
R
, et al
.
Pediatric MDS and bone marrow failure-associated germline mutations in SAMD9 and SAMD9L impair multiple pathways in primary hematopoietic cells
.
Leukemia
.
2021
;
35
(
11
):
3232
-
3244
.
65.
Tesi
B
,
Davidsson
J
,
Voss
M
, et al
.
Gain-of-function SAMD9L mutations cause a syndrome of cytopenia, immunodeficiency, MDS, and neurological symptoms
.
Blood
.
2017
;
129
(
16
):
1
-
4
.
66.
Katayama
S
,
Suzuki
M
,
Yamaoka
A
, et al
.
GATA2 haploinsufficiency accelerates EVI1-driven leukemogenesis
.
Blood
.
2017
;
130
(
7
):
908
-
919
.
67.
Sankaran
VG
,
Menne
TF
,
Xu
J
, et al
.
Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A
.
Science
.
2008
;
322
(
5909
):
1839
-
1842
.
68.
Sunami
Y
,
Yokoyama
T
,
Yoshino
S
, et al
.
BCL11A promotes myeloid leukemogenesis by repressing PU.1 target genes
.
Blood Adv
.
2022
;
6
(
6
):
1827
-
1843
.
69.
Shields
BJ
,
Jackson
JT
,
Metcalf
D
, et al
.
Acute myeloid leukemia requires Hhex to enable PRC2-mediated epigenetic repression of Cdkn2a
.
Genes Dev
.
2016
;
30
(
1
):
78
-
91
.
70.
Taoudi
S
,
Bee
T
,
Hilton
A
, et al
.
ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic specification
.
Genes Dev
.
2011
;
25
(
3
):
251
-
262
.
71.
Rockova
V
,
Abbas
S
,
Wouters
BJ
, et al
.
Risk stratification of intermediate-risk acute myeloid leukemia: integrative analysis of a multitude of gene mutation and gene expression markers
.
Blood
.
2011
;
118
(
4
):
1069
-
1076
.
72.
Zerkalenkova
E
,
Panfyorova
A
,
Kazakova
A
, et al
.
Molecular characteristic of acute leukemias with t(16;21)/FUS-ERG
.
Ann Hematol
.
2018
;
97
(
6
):
977
-
988
.
73.
Sotoca
AM
,
Prange
KHM
,
Reijnders
B
, et al
.
The oncofusion protein FUS–ERG targets key hematopoietic regulators and modulates the all-trans retinoic acid signaling pathway in t(16;21) acute myeloid leukemia
.
Oncogene
.
2016
;
35
(
15
):
1965
-
1976
.
74.
Weber
S
,
Haferlach
C
,
Jeromin
S
, et al
.
Gain of chromosome 21 or amplification of chromosome arm 21q is one mechanism for increased ERG expression in acute myeloid leukemia
.
Genes Chromosomes Cancer
.
2016
;
55
(
2
):
148
-
157
.
75.
Lee
WY
,
Gutierrez-Lanz
EA
,
Xiao
H
, et al
.
ERG amplification is a secondary recurrent driver event in myeloid malignancy with complex karyotype and TP53 mutations
.
Genes Chromosomes Cancer
.
2022
;
61
(
7
):
399
-
411
.
76.
Thoms
JAI
,
Birger
Y
,
Foster
S
, et al
.
ERG promotes T-acute lymphoblastic leukemia and is transcriptionally regulated in leukemic cells by a stem cell enhancer
.
Blood
.
2011
;
117
(
26
):
7079
-
7089
.
77.
Masamoto
Y
,
Chiba
A
,
Mizuno
H
, et al
.
EVI1 exerts distinct roles in AML via ERG and cyclin D1 promoting a chemoresistance and immune-suppressive environment. Blood Adv
. Published online. 21 October 2022https://doi.org/10.1182/bloodadvances.2022008018
78.
Thirant
C
,
Ignacimouttou
C
,
Lopez
CK
, et al
.
ETO2-GLIS2 hijacks transcriptional complexes to drive cellular identity and self-renewal in pediatric acute megakaryoblastic leukemia
.
Cancer Cell
.
2017
;
31
(
3
):
452
-
465
.
79.
Tomlins
SA
,
Rhodes
DR
,
Perner
S
, et al
.
Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer
.
Science
.
2005
;
310
(
5748
):
644
-
648
.
80.
Giovannini
M
,
Biegel
JA
,
Serra
M
, et al
.
EWS-erg and EWS-Fli1 fusion transcripts in Ewing’s sarcoma and primitive neuroectodermal tumors with variant translocations
.
J Clin Invest
.
1994
;
94
(
2
):
489
-
496
.
You do not currently have access to this content.

Sign in via your Institution