• NTBI uptake by LSECs is the major signal for Bmp6 induction during iron overload, and Tfr1 contributes mostly under low iron conditions.

  • Bmp6 induction in the presence of NTBI is associated with extensive genetic reprogramming of LSECs that involves Nrf2 and Myc pathways.

Homeostatic adaptation to systemic iron overload involves transcriptional induction of bone morphogenetic protein 6 (BMP6) in liver sinusoidal endothelial cells (LSECs). BMP6 is then secreted to activate signaling of the iron hormone hepcidin (HAMP) in neighboring hepatocytes. To explore the mechanism of iron sensing by LSECs, we generated TfrcTek-Cre mice with endothelial cell–specific ablation of transferrin receptor 1 (Tfr1). We also used control Tfrcfl/fl mice to characterize the LSEC-specific molecular responses to iron using single-cell transcriptomics. TfrcTek-Cre animals tended to have modestly increased liver iron content (LIC) compared with Tfrcfl/fl controls but expressed physiological Bmp6 and Hamp messenger RNA (mRNA). Despite a transient inability to upregulate Bmp6, they eventually respond to iron challenges with Bmp6 and Hamp induction, yet occasionally to levels slightly lower relative to LIC. High dietary iron intake triggered the accumulation of serum nontransferrin bound iron (NTBI), which significantly correlated with liver Bmp6 and Hamp mRNA levels and elicited more profound alterations in the LSEC transcriptome than holo-transferrin injection. This culminated in the robust induction of Bmp6 and other nuclear factor erythroid 2–related factor 2 (Nrf2) target genes, as well as Myc target genes involved in ribosomal biogenesis and protein synthesis. LSECs and midzonal hepatocytes were the most responsive liver cells to iron challenges and exhibited the highest expression of Bmp6 and Hamp mRNAs, respectively. Our data suggest that during systemic iron overload, LSECs internalize NTBI, which promotes oxidative stress and thereby transcriptionally induces Bmp6 via Nrf2. Tfr1 appears to contribute to iron sensing by LSECs, mostly under low iron conditions.

1.
Xiao
X
,
Alfaro-Magallanes
VM
,
Babitt
JL
.
Bone morphogenic proteins in iron homeostasis
.
Bone
.
2020
;
138
:
115495
.
2.
Nemeth
E
,
Ganz
T
.
Hepcidin-ferroportin interaction controls systemic iron homeostasis
.
Int J Mol Sci
.
2021
;
22
(
12
):
6493
.
3.
Billesbolle
CB
,
Azumaya
CM
,
Kretsch
RC
, et al
.
Structure of hepcidin-bound ferroportin reveals iron homeostatic mechanisms
.
Nature
.
2020
;
586
(
7831
):
807
-
811
.
4.
Nemeth
E
,
Tuttle
MS
,
Powelson
J
, et al
.
Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization
.
Science
.
2004
;
306
(
5704
):
2090
-
2093
.
5.
Worthen
CA
,
Enns
CA
.
The role of hepatic transferrin receptor 2 in the regulation of iron homeostasis in the body
.
Front Pharmacol
.
2014
;
5
:
34
.
6.
Canali
S
,
Zumbrennen-Bullough
KB
,
Core
AB
, et al
.
Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice
.
Blood
.
2017
;
129
(
4
):
405
-
414
.
7.
Koch
PS
,
Olsavszky
V
,
Ulbrich
F
, et al
.
Angiocrine Bmp2 signaling in murine liver controls normal iron homeostasis
.
Blood
.
2017
;
129
(
4
):
415
-
419
.
8.
Canali
S
,
Wang
CY
,
Zumbrennen-Bullough
KB
,
Bayer
A
,
Babitt
JL
.
Bone morphogenetic protein 2 controls iron homeostasis in mice independent of Bmp6
.
Am J Hematol
.
2017
;
92
(
11
):
1204
-
1213
.
9.
Lim
PJ
,
Duarte
TL
,
Arezes
J
, et al
.
Nrf2 controls iron homeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin
.
Nat Metab
.
2019
;
1
(
5
):
519
-
531
.
10.
Wang
S
,
Chen
C
,
Yu
L
,
Mueller
J
,
Rausch
V
,
Mueller
S
.
Bone morphogenetic protein 6-mediated crosstalk between endothelial cells and hepatocytes recapitulates the iron-sensing pathway in vitro
.
J Biol Chem
.
2021
;
297
(
6
):
101378
.
11.
Noguchi
T
,
Ikeda
M
,
Murakami
M
, et al
.
Regulatory expression of bone morphogenetic protein 6 by 2,2'-dipyridyl
.
Biochim Biophys Acta Gen Subj
.
2020
;
1864
(
8
):
129610
.
12.
Katsarou
A
,
Pantopoulos
K
.
Basics and principles of cellular and systemic iron homeostasis
.
Mol Aspects Med
.
2020
;
75
:
100866
.
13.
Fillebeen
C
,
Charlebois
E
,
Wagner
J
, et al
.
Transferrin receptor 1 controls systemic iron homeostasis by fine-tuning hepcidin expression to hepatocellular iron load
.
Blood
.
2019
;
133
(
4
):
344
-
355
.
14.
Kisanuki
YY
,
Hammer
RE
,
Miyazaki
J
,
Williams
SC
,
Richardson
JA
,
Yanagisawa
M
.
Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo
.
Dev Biol
.
2001
;
230
(
2
):
230
-
242
.
15.
Rautureau
Y
,
Coelho
SC
,
Fraulob-Aquino
JC
, et al
.
Inducible human endothelin-1 overexpression in endothelium raises blood pressure via endothelin type A receptors
.
Hypertension
.
2015
;
66
(
2
):
347
-
355
.
16.
Fillebeen
C
,
Wilkinson
N
,
Charlebois
E
,
Katsarou
A
,
Wagner
J
,
Pantopoulos
K
.
Hepcidin-mediated hypoferremic response to acute inflammation requires a threshold of Bmp6/Hjv/Smad signaling
.
Blood
.
2018
;
132
(
17
):
1829
-
1841
.
17.
Katsarou
A
,
Gkouvatsos
K
,
Fillebeen
C
,
Pantopoulos
K
.
Tissue-specific regulation of ferroportin in wild-type and Hjv-/- mice following dietary iron manipulations
.
Hepatol Commun
.
2021
;
5
(
12
):
2139
-
2150
.
18.
Daba
A
,
Gkouvatsos
K
,
Sebastiani
G
,
Pantopoulos
K
.
Differences in activation of mouse hepcidin by dietary iron and parenterally administered iron dextran: compartmentalization is critical for iron sensing
.
J Mol Med (Berl)
.
2013
;
91
(
1
):
95
-
102
.
19.
Craven
CM
,
Alexander
J
,
Eldridge
M
,
Kushner
JP
,
Bernstein
S
,
Kaplan
J
.
Tissue distribution and clearance kinetics of non-transferrin-bound iron in the hypotransferrinemic mouse: a rodent model for hemochromatosis
.
Proc Natl Acad Sci U S A
.
1987
;
84
(
10
):
3457
-
3461
.
20.
Skinnider
MA
,
Squair
JW
,
Kathe
C
, et al
.
Cell type prioritization in single-cell data
.
Nat Biotechnol
.
2021
;
39
(
1
):
30
-
34
.
21.
Halpern
KB
,
Shenhav
R
,
Massalha
H
, et al
.
Paired-cell sequencing enables spatial gene expression mapping of liver endothelial cells
.
Nat Biotechnol
.
2018
;
36
(
10
):
962
-
970
.
22.
Colucci
S
,
Altamura
S
,
Marques
O
, et al
.
Liver sinusoidal endothelial cells suppress bone morphogenetic protein 2 production in response to TGFβ pathway activation
.
Hepatology
.
2021
;
74
(
4
):
2186
-
2200
.
23.
Ben-Moshe
S
,
Shapira
Y
,
Moor
AE
, et al
.
Spatial sorting enables comprehensive characterization of liver zonation
.
Nat Metab
.
2019
;
1
(
9
):
899
-
911
.
24.
Halpern
KB
,
Shenhav
R
,
Matcovitch-Natan
O
, et al
.
Single-cell spatial reconstruction reveals global division of labour in the mammalian liver
.
Nature
.
2017
;
542
(
7641
):
352
-
356
.
25.
Payne
S
,
De Val
S
,
Neal
A
.
Endothelial-specific cre mouse models
.
Arterioscler Thromb Vasc Biol
.
2018
;
38
(
11
):
2550
-
2561
.
26.
Levy
JE
,
Jin
O
,
Fujiwara
Y
,
Kuo
F
,
Andrews
NC
.
Transferrin receptor is necessary for development of erythrocytes and the nervous system
.
Nat Genet
.
1999
;
21
(
4
):
396
-
399
.
27.
Fisher
AL
,
Wang
CY
,
Xu
Y
, et al
.
Functional role of endothelial transferrin receptor 1 in iron sensing and homeostasis
.
Am J Hematol
.
2022
;
97
(
12
):
1548
-
1559
.
28.
Corradini
E
,
Meynard
D
,
Wu
Q
, et al
.
Serum and liver iron differently regulate the bone morphogenetic protein 6 (BMP6)-SMAD signaling pathway in mice
.
Hepatology
.
2011
;
54
(
1
):
273
-
284
.
29.
Jenkitkasemwong
S
,
Wang
CY
,
Coffey
R
, et al
.
SLC39A14 is required for the development of hepatocellular iron overload in murine models of hereditary hemochromatosis
.
Cell Metab
.
2015
;
22
(
1
):
138
-
150
.
30.
Zhang
Z
,
Guo
X
,
Herrera
C
, et al
.
Bmp6 expression can be regulated independently of liver iron in mice
.
PLoS One
.
2014
;
9
(
1
):
e84906
.
31.
Yanatori
I
,
Richardson
DR
,
Dhekne
HS
,
Toyokuni
S
,
Kishi
F
.
CD63 is regulated by iron via the IRE-IRP system and is important for ferritin secretion by extracellular vesicles
.
Blood
.
2021
;
138
(
16
):
1490
-
1503
.
32.
Feng
Q
,
Migas
MC
,
Waheed
A
,
Britton
RS
,
Fleming
RE
.
Ferritin upregulates hepatic expression of bone morphogenetic protein 6 and hepcidin in mice
.
Am J Physiol Gastrointest Liver Physiol
.
2012
;
302
(
12
):
G1397
-
G1404
.
33.
Tonelli
C
,
Chio
IIC
,
Tuveson
DA
.
Transcriptional regulation by Nrf2
.
Antioxid Redox Signal
.
2018
;
29
(
17
):
1727
-
1745
.
34.
Kerins
MJ
,
Ooi
A
.
The roles of NRF2 in modulating cellular iron homeostasis
.
Antioxid Redox Signal
.
2018
;
29
(
17
):
1756
-
1773
.
35.
Vinchi
F
.
Non-transferrin-bound iron in the spotlight: novel mechanistic insights into the vasculotoxic and atherosclerotic effect of iron
.
Antioxid Redox Signal
.
2021
;
35
(
6
):
387
-
414
.
36.
Wang
CY
,
Jenkitkasemwong
S
,
Duarte
S
, et al
.
ZIP8 is an iron and zinc transporter whose cell-surface expression is up-regulated by cellular iron loading
.
J Biol Chem
.
2012
;
287
(
41
):
34032
-
34043
.
37.
van Riggelen
J
,
Yetil
A
,
Felsher
DW
.
MYC as a regulator of ribosome biogenesis and protein synthesis
.
Nat Rev Cancer
.
2010
;
10
(
4
):
301
-
309
.
You do not currently have access to this content.

Sign in via your Institution