• RUNX1-deficient megakaryocytes exhibit thrombopoietic and platelet defects in NSG/VWFR1326H mice.

  • Preexposure of RUNX1-deficient megakaryocytes to a TGFβ1-pathway inhibitor ameliorated both defects, correcting hemostasis.

Heterozygous defects in runt-related transcription factor 1 (RUNX1) are causative of a familial platelet disorder with associated myeloid malignancy (FPDMM). Because RUNX1-deficient animal models do not mimic bleeding disorder or leukemic risk associated with FPDMM, development of a proper model system is critical to understanding the underlying mechanisms of the observed phenotype and to identifying therapeutic interventions. We previously reported an in vitro megakaryopoiesis system comprising human CD34+ hematopoietic stem and progenitor cells that recapitulated the FPDMM quantitative megakaryocyte defect through a decrease in RUNX1 expression via a lentiviral short hairpin RNA strategy. We now show that shRX-megakaryocytes have a marked reduction in agonist responsiveness. We then infused shRX-megakaryocytes into immunocompromised NOD scid gamma (NSG) mice and demonstrated that these megakaryocytes released fewer platelets than megakaryocytes transfected with a nontargeting shRNA, and these platelets had a diminished half-life. The platelets were also poorly responsive to agonists, unable to correct thrombus formation in NSG mice homozygous for a R1326H mutation in von Willebrand Factor (VWFR1326H), which switches the species-binding specificity of the VWF from mouse to human glycoprotein Ibα. A small-molecule inhibitor RepSox, which blocks the transforming growth factor β1 (TGFβ1) pathway and rescued defective megakaryopoiesis in vitro, corrected the thrombopoietic defect, defects in thrombus formation and platelet half-life, and agonist response in NSG/VWFR1326H mice. Thus, this model recapitulates the defects in FPDMM megakaryocytes and platelets, identifies previously unrecognized defects in thrombopoiesis and platelet half-life, and demonstrates for the first time, reversal of RUNX1 deficiency–induced hemostatic defects by a drug.

1.
Okuda
T
,
van Deursen
J
,
Hiebert
SW
,
Grosveld
G
,
Downing
JR
.
AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis
.
Cell
.
1996
;
84
(
2
):
321
-
330
.
2.
Wang
Q
,
Stacy
T
,
Miller
JD
, et al
.
The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo
.
Cell
.
1996
;
87
(
4
):
697
-
708
.
3.
Kalev-Zylinska
ML
,
Horsfield
JA
,
Flores
MV
, et al
.
Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis
.
Development
.
2002
;
129
(
8
):
2015
-
2030
.
4.
Lee
TI
,
Young
RA
.
Transcriptional regulation and its misregulation in disease
.
Cell
.
2013
;
152
(
6
):
1237
-
1251
.
5.
Ichikawa
M
,
Asai
T
,
Saito
T
, et al
.
AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis
.
Nat Med
.
2004
;
10
(
3
):
299
-
304
.
6.
Sun
W
,
Downing
JR
.
Haploinsufficiency of AML1 results in a decrease in the number of LTR-HSCs while simultaneously inducing an increase in more mature progenitors
.
Blood
.
2004
;
104
(
12
):
3565
-
3572
.
7.
Goldfarb
AN
.
Transcriptional control of megakaryocyte development
.
Oncogene
.
2007
;
26
(
47
):
6795
-
6802
.
8.
Tijssen
MR
,
Ghevaert
C
.
Transcription factors in late megakaryopoiesis and related platelet disorders
.
J Thromb Haemost
.
2013
;
11
(
4
):
593
-
604
.
9.
Yoshida
H
,
Lareau
CA
,
Ramirez
RN
, et al
.
The cis-regulatory atlas of the mouse immune system
.
Cell
.
2019
;
176
(
4
):
897
-
912.e20
.
10.
Schlegelberger
B
,
Heller
PG
.
RUNX1 deficiency (familial platelet disorder with predisposition to myeloid leukemia, FPDMM)
.
Semin Hematol
.
2017
;
54
(
2
):
75
-
80
.
11.
Song
WJ
,
Sullivan
MG
,
Legare
RD
, et al
.
Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia
.
Nat Genet
.
1999
;
23
(
2
):
166
-
175
.
12.
Preudhomme
C
,
Renneville
A
,
Bourdon
V
, et al
.
High frequency of RUNX1 biallelic alteration in acute myeloid leukemia secondary to familial platelet disorder
.
Blood
.
2009
;
113
(
22
):
5583
-
5587
.
13.
Jongmans
MC
,
Kuiper
RP
,
Carmichael
CL
, et al
.
Novel RUNX1 mutations in familial platelet disorder with enhanced risk for acute myeloid leukemia: clues for improved identification of the FPD/AML syndrome
.
Leukemia
.
2010
;
24
(
1
):
242
-
246
.
14.
Babushok
DV
,
Bessler
M
,
Olson
TS
.
Genetic predisposition to myelodysplastic syndrome and acute myeloid leukemia in children and young adults
.
Leuk Lymphoma
.
2016
;
57
(
3
):
520
-
536
.
15.
Kanagal-Shamanna
R
,
Loghavi
S
,
DiNardo
CD
, et al
.
Bone marrow pathologic abnormalities in familial platelet disorder with propensity for myeloid malignancy and germline RUNX1 mutation
.
Haematologica
.
2017
;
102
(
10
):
1661
-
1670
.
16.
Cavalcante de Andrade Silva
M
,
Krepischi
ACV
,
Kulikowski
LD
, et al
.
Deletion of RUNX1 exons 1 and 2 associated with familial platelet disorder with propensity to acute myeloid leukemia
.
Cancer Genet
.
2018
;
222-223
:
32
-
37
.
17.
Cai
X
,
Gaudet
JJ
,
Mangan
JK
, et al
.
Runx1 loss minimally impacts long-term hematopoietic stem cells
.
PLoS One
.
2011
;
6
(
12
):
e28430
.
18.
Vo
KK
,
Jarocha
DJ
,
Lyde
RB
, et al
.
FLI1 level during megakaryopoiesis affects thrombopoiesis and platelet biology
.
Blood
.
2017
;
129
(
26
):
3486
-
3494
.
19.
Connelly
JP
,
Kwon
EM
,
Gao
Y
, et al
.
Targeted correction of RUNX1 mutation in FPD patient-specific induced pluripotent stem cells rescues megakaryopoietic defects
.
Blood
.
2014
;
124
(
12
):
1926
-
1930
.
20.
Antony-Debré
I
,
Manchev
VT
,
Balayn
N
, et al
.
Level of RUNX1 activity is critical for leukemic predisposition but not for thrombocytopenia
.
Blood
.
2015
;
125
(
6
):
930
-
940
.
21.
Li
Y
,
Jin
C
,
Bai
H
, et al
.
Human NOTCH4 is a key target of RUNX1 in megakaryocytic differentiation
.
Blood
.
2018
;
131
(
2
):
191
-
201
.
22.
Estevez
B
,
Borst
S
,
Jarocha
D
, et al
.
RUNX-1 haploinsufficiency causes a marked deficiency of megakaryocyte-biased hematopoietic progenitor cells
.
Blood
.
2021
;
137
(
19
):
2662
-
2675
.
23.
Ditadi
A
,
Sturgeon
CM
,
Keller
G
.
A view of human haematopoietic development from the Petri dish
.
Nat Rev Mol Cell Biol
.
2017
;
18
(
1
):
56
-
67
.
24.
Wang
Y
,
Hayes
V
,
Jarocha
D
, et al
.
Comparative analysis of human ex vivo-generated platelets vs megakaryocyte-generated platelets in mice: a cautionary tale
.
Blood
.
2015
;
125
(
23
):
3627
-
3636
.
25.
Fuentes
R
,
Wang
Y
,
Hirsch
J
, et al
.
Infusion of mature megakaryocytes into mice yields functional platelets
.
J Clin Invest
.
2010
;
120
(
11
):
3917
-
3922
.
26.
Lefrançais
E
,
Ortiz-Muñoz
G
,
Caudrillier
A
, et al
.
The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors
.
Nature
.
2017
;
544
(
7648
):
105
-
109
.
27.
Chen
J
,
Tan
K
,
Zhou
H
, et al
.
Modifying murine von Willebrand factor A1 domain for in vivo assessment of human platelet therapies
.
Nat Biotechnol
.
2008
;
26
(
1
):
114
-
119
.
28.
Adair
BD
,
Alonso
JL
,
van Agthoven
J
, et al
.
Structure-guided design of pure orthosteric inhibitors of αIIbβ3 that prevent thrombosis but preserve hemostasis
.
Nat Commun
.
2020
;
11
(
1
):
398
-
409
.
29.
Huang
N
,
Lou
M
,
Liu
H
,
Avila
C
,
Ma
Y
.
Identification of a potent small molecule capable of regulating polyploidization, megakaryocyte maturation, and platelet production
.
J Hematol Oncol
.
2016
;
9
(
1
):
136
.
30.
Jarocha
D
,
Vo
KK
,
Lyde
RB
,
Hayes
V
,
Camire
RM
,
Poncz
M
.
Enhancing functional platelet release in vivo from in vitro-grown megakaryocytes using small molecule inhibitors
.
Blood Adv
.
2018
;
2
(
6
):
597
-
606
.
31.
Furman
MI
,
Liu
L
,
Benoit
SE
,
Becker
RC
,
Barnard
MR
,
Michelson
AD
.
The cleaved peptide of the thrombin receptor is a strong platelet agonist
.
Proc Natl Acad Sci U S A
.
1998
;
95
(
6
):
3082
-
3087
.
32.
Rodriguez
BAT
,
Bhan
A
,
Beswick
A
, et al
.
A platelet function modulator of thrombin activation is causally linked to cardiovascular disease and affects PAR4 receptor signaling
.
Am J Hum Genet
.
2020
;
107
(
2
):
211
-
221
.
33.
Francischetti
IM
,
Ghazaleh
FA
,
Reis
RA
,
Carlini
CR
,
Guimarães
JA
.
Convulxin induces platelet activation by a tyrosine-kinase-dependent pathway and stimulates tyrosine phosphorylation of platelet proteins, including PLC gamma 2, independently of integrin alpha IIb beta 3
.
Arch Biochem Biophys
.
1998
;
353
(
2
):
239
-
250
.
34.
Kanaji
S
,
Kanaji
T
,
Furihata
K
,
Kato
K
,
Ware
JL
,
Kunicki
TJ
.
Convulxin binds to native, human glycoprotein Ib alpha
.
J Biol Chem
.
2003
;
278
(
41
):
39452
-
39460
.
35.
Kinlough-Rathbone
RL
,
Rand
ML
,
Packham
MA
.
Rabbit and rat platelets do not respond to thrombin receptor peptides that activate human platelets
.
Blood
.
1993
;
82
(
1
):
103
-
106
.
36.
Huang
H
,
Woo
AJ
,
Waldon
Z
, et al
.
A Src family kinase-Shp2 axis controls RUNX1 activity in megakaryocyte and T-lymphocyte differentiation
.
Genes Dev
.
2012
;
26
(
14
):
1587
-
1601
.
37.
Angers-Loustau
A
,
Hering
R
,
Werbowetski
TE
,
Kaplan
DR
,
Del Maestro
RF
.
SRC regulates actin dynamics and invasion of malignant glial cells in three dimensions
.
Mol Cancer Res
.
2004
;
2
(
11
):
595
-
605
.
38.
Angell
RM
,
Atkinson
FL
,
Brown
MJ
, et al
.
N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)amides as potent, selective, inhibitors of JNK2 and JNK3
.
Bioorg Med Chem Lett
.
2007
;
17
(
5
):
1296
-
1301
.
39.
Olsauskas-Kuprys
R
,
Zlobin
A
,
Osipo
C
.
Gamma secretase inhibitors of Notch signaling
.
OncoTargets Ther
.
2013
;
6
:
943
-
955
.
40.
Glembotsky
AC
,
Bluteau
D
,
Espasandin
YR
, et al
.
Mechanisms underlying platelet function defect in a pedigree with familial platelet disorder with a predisposition to acute myelogenous leukemia: potential role for candidate RUNX1 targets
.
J Thromb Haemost
.
2014
;
12
(
5
):
761
-
772
.
41.
Rao
AK
,
Poncz
M
.
Defective acid hydrolase secretion in RUNX1 haplodeficiency: evidence for a global platelet secretory defect
.
Haemophilia
.
2017
;
23
(
5
):
784
-
792
.
42.
Secchiero
P
,
Voltan
R
,
Rimondi
E
, et al
.
The γ-secretase inhibitors enhance the anti-leukemic activity of ibrutinib in B-CLL cells
.
Oncotarget
.
2017
;
8
(
35
):
59235
-
59245
.
43.
Cheng
M
,
Lv
X
,
Zhang
C
, et al
.
DNMT1, a novel regulator mediating mTORC1/mTORC2 pathway-induced NGF expression in Schwann cells
.
Neurochem Res
.
2018
;
43
(
11
):
2141
-
2154
.
44.
Santini
V
,
Valcárcel
D
,
Platzbecker
U
, et al
.
Phase II study of the ALK5 inhibitor galunisertib in very low-, low-, and intermediate-risk myelodysplastic syndromes
.
Clin Cancer Res
.
2019
;
25
(
23
):
6976
-
6985
.
45.
Xiao
X
,
Lai
W
,
Xie
H
, et al
.
Targeting JNK pathway promotes human hematopoietic stem cell expansion
.
Cell Discov
.
2019
;
5
:
2
-
13
.
46.
Varricchio
L
,
Iancu-Rubin
C
,
Upadhyaya
B
, et al
.
TGF-β1 protein trap AVID200 beneficially affects hematopoiesis and bone marrow fibrosis in myelofibrosis
.
JCI Insight
.
2021
;
6
(
18
):
e145651
.
47.
Boitano
AE
,
de Lichtervelde
L
,
Snead
JL
,
Cooke
MP
,
Schultz
PG
.
An image-based screen identifies a small molecule regulator of megakaryopoiesis
.
Proc Natl Acad Sci U S A
.
2012
;
109
(
35
):
14019
-
14023
.
48.
Javarappa
KK
,
Tsallos
D
,
Heckman
CA
.
A multiplexed screening assay to evaluate chemotherapy-induced myelosuppression using healthy peripheral blood and bone marrow
.
SLAS Discov
.
2018
;
23
(
7
):
687
-
696
.
49.
Gaur
M
,
Kamata
T
,
Wang
S
,
Moran
B
,
Shattil
SJ
,
Leavitt
AD
.
Megakaryocytes derived from human embryonic stem cells: a genetically tractable system to study megakaryocytopoiesis and integrin function
.
J Thromb Haemost
.
2006
;
4
(
2
):
436
-
442
.
50.
Brown
AL
,
Arts
P
,
Carmichael
CL
, et al
.
RUNX1-mutated families show phenotype heterogeneity and a somatic mutation profile unique to germline predisposed AML
.
Blood Adv
.
2020
;
4
(
6
):
1131
-
1144
.
51.
Churpek
JE
,
Pyrtel
K
,
Kanchi
KL
, et al
.
Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia
.
Blood
.
2015
;
126
(
22
):
2484
-
2490
.
52.
Ide
M
,
Jinnin
M
,
Tomizawa
Y
, et al
.
Transforming growth factor β-inhibitor Repsox downregulates collagen expression of scleroderma dermal fibroblasts and prevents bleomycin-induced mice skin fibrosis
.
Exp Dermatol
.
2017
;
26
(
11
):
1139
-
1143
.
53.
Tilburg
J
,
Becker
IC
,
Italiano
JE
.
Don't you forget about me(gakaryocytes)
.
Blood
.
2022
;
139
(
22
):
3245
-
3254
.
You do not currently have access to this content.

Sign in via your Institution