• Genetic and pharmacological inhibition of PRL2 significantly reduce FLT3-ITD-driven leukemia burden and extend leukemic mice survival.

  • PRL2 dephosphorylates CBL at tyrosine 371 and blocks CBL-mediated FLT3 ubiquitination and degradation in leukemia cells.

Acute myeloid leukemia (AML) is an aggressive blood cancer with poor prognosis. FMS-like tyrosine kinase receptor-3 (FLT3) is one of the major oncogenic receptor tyrosine kinases aberrantly activated in AML. Although protein tyrosine phosphatase PRL2 is highly expressed in some subtypes of AML compared with normal human hematopoietic stem and progenitor cells, the mechanisms by which PRL2 promotes leukemogenesis are largely unknown. We discovered that genetic and pharmacological inhibition of PRL2 significantly reduce the burden of FLT3-internal tandem duplications–driven leukemia and extend the survival of leukemic mice. Furthermore, we found that PRL2 enhances oncogenic FLT3 signaling in leukemia cells, promoting their proliferation and survival. Mechanistically, PRL2 dephosphorylates the E3 ubiquitin ligase CBL at tyrosine 371 and attenuates CBL-mediated ubiquitination and degradation of FLT3, leading to enhanced FLT3 signaling in leukemia cells. Thus, our study reveals that PRL2 enhances oncogenic FLT3 signaling in leukemia cells through dephosphorylation of CBL and will likely establish PRL2 as a novel druggable target for AML.

1.
Roboz
GJ
.
Treatment of acute myeloid leukemia in older patients
.
Expet Rev Anticancer Ther
.
2007
;
7
(
3
):
285
-
295
.
2.
Roboz
GJ
.
Current treatment of acute myeloid leukemia
.
Curr Opin Oncol
.
2012
;
24
(
6
):
711
-
719
.
3.
Burnett
A
,
Wetzler
M
,
Löwenberg
B
.
Therapeutic advances in acute myeloid leukemia
.
J Clin Oncol
.
2011
;
29
(
5
):
487
-
494
.
4.
Toffalini
F
,
Demoulin
J-B
.
New insights into the mechanisms of hematopoietic cell transformation by activated receptor tyrosine kinases
.
Blood
.
2010
;
116
(
14
):
2429
-
2437
.
5.
Stirewalt
DL
,
Meshinchi
S
. Receptor tyrosine kinase alterations in AML – biology and therapy. . In:
Nagarajan
L
, eds.
Acute Myelogenous Leukemia: Genetics, Biology and Therapy
.
Springer
;
2010
:
85
-
108
.
6.
Kindler
T
,
Lipka
DB
,
Fischer
T
.
FLT3 as a therapeutic target in AML: still challenging after all these years
.
Blood
.
2010
;
116
(
24
):
5089
-
5102
.
7.
Swords
R
,
Freeman
C
,
Giles
F
.
Targeting the FMS-like tyrosine kinase 3 in acute myeloid leukemia
.
Leukemia
.
2012
;
26
(
10
):
2176
-
2185
.
8.
Metzelder
S
,
Wang
Y
,
Wollmer
E
, et al
.
Compassionate use of sorafenib in FLT3-ITD–positive acute myeloid leukemia: sustained regression before and after allogeneic stem cell transplantation
.
Blood
.
2009
;
113
(
26
):
6567
-
6571
.
9.
Alfayez
M
,
Kantarjian
HM
,
Ravandi
F
, et al
.
Outcomes with subsequent FLT3-inhibitor (FLT3i) based therapies in FLT3-mutated (mu) patients (pts) refractory/relapsed (R/R) to one or more prior FLT3 inhibitor based therapies: a single center experience
.
Blood
.
2018
;
132
(
1
):
663
.
10.
Hope
KJ
,
Jin
L
,
Dick
JE
.
Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity
.
Nat Immunol
.
2004
;
5
(
7
):
738
-
743
.
11.
Guzman
ML
,
Jordan
CT
.
Considerations for targeting malignant stem cells in leukemia
.
Cancer Control
.
2004
;
11
(
2
):
97
-
104
.
12.
Kreso
A
,
Dick
JE
.
Evolution of the cancer stem cell model
.
Cell Stem Cell
.
2014
;
14
(
3
):
275
-
291
.
13.
Gerber
JM
,
Smith
BD
,
Ngwang
B
, et al
.
A clinically relevant population of leukemic CD34(+)CD38(-) cells in acute myeloid leukemia
.
Blood
.
2012
;
119
(
15
):
3571
-
3577
.
14.
Garz
AK
,
Wolf
S
,
Grath
S
, et al
.
Azacitidine combined with the selective FLT3 kinase inhibitor crenolanib disrupts stromal protection and inhibits expansion of residual leukemia-initiating cells in FLT3-ITD AML with concurrent epigenetic mutations
.
Oncotarget
.
2017
;
8
(
65
):
108738
-
108759
.
15.
Thien
CBF
,
Langdon
WY
.
Cbl: many adaptations to regulate protein tyrosine kinases
.
Nat Rev Mol Cell Biol
.
2001
;
2
(
4
):
294
-
307
.
16.
Naramura
M
,
Nandwani
N
,
Gu
H
,
Band
V
,
Band
H
.
Rapidly fatal myeloproliferative disorders in mice with deletion of Casitas B-cell lymphoma (Cbl) and Cbl-b in hematopoietic stem cells
.
Proc Natl Acad Sci USA
.
2010
;
107
(
37
):
16274
-
16279
.
17.
An
W
,
Nadeau
SA
,
Mohapatra
BC
, et al
.
Loss of Cbl and Cbl-b ubiquitin ligases abrogates hematopoietic stem cell quiescence and sensitizes leukemic disease to chemotherapy
.
Oncotarget
.
2015
;
6
(
12
):
10498
-
10509
.
18.
An
W
,
Mohapatra
BC
,
Zutshi
N
, et al
.
VAV1-Cre mediated hematopoietic deletion of CBL and CBL-B leads to JMML-like aggressive early-neonatal myeloproliferative disease
.
Oncotarget
.
2016
;
7
(
37
):
59006
-
59016
.
19.
Makishima
H
,
Cazzolli
H
,
Szpurka
H
, et al
.
Mutations of e3 ubiquitin ligase cbl family members constitute a novel common pathogenic lesion in myeloid malignancies
.
J Clin Oncol
.
2009
;
27
(
36
):
6109
-
6116
.
20.
Sanada
M
,
Suzuki
T
,
Shih
L-Y
, et al
.
Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms
.
Nature
.
2009
;
460
(
7257
):
904
-
908
.
21.
Niemeyer
CM
,
Kang
MW
,
Shin
DH
, et al
.
Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia
.
Nat Genet
.
2010
;
42
(
9
):
794
-
800
.
22.
Nadeau
SA
,
An
W
,
Mohapatra
BC
, et al
.
Structural determinants of the gain-of-function phenotype of human leukemia-associated mutant CBL oncogene
.
J Biol Chem
.
2017
;
292
(
9
):
3666
-
3682
.
23.
Bessette
DC
,
Qiu
D
,
Pallen
CJ
.
PRL PTPs: mediators and markers of cancer progression
.
Cancer Metastasis Rev
.
2008
;
27
(
2
):
231
-
252
.
24.
Ríos
P
,
Li
X
,
Köhn
M
.
Molecular mechanisms of the PRL phosphatases
.
FEBS J
.
2013
;
280
(
2
):
505
-
524
.
25.
Campbell
AM
,
Zhang
Z-Y
.
Phosphatase of regenerating liver: a novel target for cancer therapy
.
Expert Opin Ther Targets
.
2014
;
18
(
5
):
555
-
569
.
26.
Kobayashi
M
,
Chen
S
,
Gao
R
,
Bai
Y
,
Zhang
Z-Y
,
Liu
Y
.
Phosphatase of regenerating liver in hematopoietic stem cells and hematological malignancies
.
Cell Cycle
.
2014
;
13
(
18
):
2827
-
2835
.
27.
Kobayashi
M
,
Chen
S
,
Bai
Y
, et al
.
Phosphatase PRL2 promotes AML1-ETO-induced acute myeloid leukemia
.
Leukemia
.
2017
;
31
(
6
):
1453
-
1457
.
28.
Kobayashi
M
,
Bai
Y
,
Dong
Y
, et al
.
PRL2/PTP4A2 phosphatase is important for hematopoietic stem cell self-renewal
.
Stem Cell
.
2014
;
32
(
7
):
1956
-
1967
.
29.
Kobayashi
M
,
Nabinger
SC
,
Bai
Y
, et al
.
Protein tyrosine phosphatase PRL2 mediates Notch and Kit signals in early T cell progenitors
.
Stem Cell
.
2017
;
35
(
4
):
1053
-
1064
.
30.
Kobayashi
M
,
Bai
Y
,
Chen
S
, et al
.
Phosphatase PRL2 promotes oncogenic NOTCH1-Induced T-cell leukemia
.
Leukemia
.
2017
;
31
(
3
):
751
-
754
.
31.
Lee
BH
,
Tothova
Z
,
Levine
RL
, et al
.
FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic myelomonocytic leukemia
.
Cancer Cell
.
2007
;
12
(
4
):
367
-
380
.
32.
Dong
Y
,
Zhang
L
,
Zhang
S
, et al
.
Phosphatase of regenerating liver 2 (PRL2) is essential for placental development by down-regulating PTEN (phosphatase and tensin homologue deleted on chromosome 10) and activating Akt protein
.
J Biol Chem
.
2012
;
287
(
38
):
32172
-
32179
.
33.
Li
Q
,
Bai
Y
,
Lyle
LT
, et al
.
Mechanism of PRL2 phosphatase-mediated PTEN degradation and tumorigenesis
.
Proc Natl Acad Sci USA
.
2020
;
117
(
34
):
20538
-
20548
.
34.
Borkin
D
,
He
S
,
Miao
H
, et al
.
Pharmacologic inhibition of the menin-MLL interaction blocks progression of MLL leukemia in vivo
.
Cancer Cell
.
2015
;
27
(
4
):
589
-
602
.
35.
Bai
Y
,
Yu
Z-H
,
Liu
S
, et al
.
Novel anticancer agents based on targeting the trimer interface of the PRL phosphatase
.
Cancer Res
.
2016
;
76
(
16
):
4805
-
4815
.
36.
Sun
J-P
,
Wang
W-Q
,
Yang
H
, et al
.
Structure and biochemical properties of PRL-1, a phosphatase implicated in cell growth, differentiation, and tumor invasion
.
Biochemistry
.
2005
;
44
(
36
):
12009
-
12021
.
37.
Sun
J-P
,
Luo
Y
,
Yu
X
, et al
.
Phosphatase activity, trimerization, and the C-terminal polybasic region are all required for PRL1-mediated cell growth and migration
.
J Biol Chem
.
2007
;
282
(
39
):
29043
-
29051
.
38.
Mercan
F
,
Bennett
AM
.
Analysis of protein tyrosine phosphatases and substrates
.
Curr Protoc Mol Biol
.
2010
;
Chapter 18
(
Unit-18
):
1
-
17
. Chapter 18:Unit-18.16.
39.
Dou
H
,
Buetow
L
,
Hock
A
,
Sibbet
GJ
,
Vousden
KH
,
Huang
DT
.
Structural basis for autoinhibition and phosphorylation-dependent activation of c-Cbl
.
Nat Struct Mol Biol
.
2012
;
19
(
2
):
184
-
192
.
40.
Mohapatra
B
,
Ahmad
G
,
Nadeau
S
, et al
.
Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases
.
Biochim Biophys Acta Mol Cell Res
.
2013
;
1833
(
1
):
122
-
139
.
41.
Ahmed
SF
,
Buetow
L
,
Gabrielsen
M
, et al
.
E3 ligase-inactivation rewires CBL interactome to elicit oncogenesis by hijacking RTK–CBL–CIN85 axis
.
Oncogene
.
2021
;
40
(
12
):
2149
-
2164
.
42.
Lam
SS
,
Martell
JD
,
Kamer
KJ
, et al
.
Directed evolution of APEX2 for electron microscopy and proximity labeling
.
Nat Methods
.
2015
;
12
(
1
):
51
-
54
.
43.
Lee
S-Y
,
Kang
M-G
,
Park
J-S
,
Lee
G
,
Ting Alice
Y
,
Rhee
H-W
.
APEX fingerprinting reveals the subcellular localization of proteins of interest
.
Cell Rep
.
2016
;
15
(
8
):
1837
-
1847
.
44.
Tan
B
,
Peng
S
,
Yatim
SMJM
,
Gunaratne
J
,
Hunziker
W
,
Ludwig
A
.
An optimized protocol for proximity biotinylation in confluent epithelial cell cultures using the peroxidase APEX2
.
STAR Protocols
.
2020
;
1
(
2
):
100074
.
45.
Tonks
NK
.
Protein tyrosine phosphatases: from genes, to function, to disease
.
Nat Rev Mol Cell Biol
.
2006
;
7
(
11
):
833
-
846
.
46.
Julien
SG
,
Dubé
N
,
Hardy
S
,
Tremblay
ML
.
Inside the human cancer tyrosine phosphatome
.
Nat Rev Cancer
.
2011
;
11
(
1
):
35
-
49
.
47.
Dou
H
,
Buetow
L
,
Sibbet
GJ
,
Cameron
K
,
Huang
DT
.
Essentiality of a non-RING element in priming donor ubiquitin for catalysis by a monomeric E3
.
Nat Struct Mol Biol
.
2013
;
20
(
8
):
982
-
986
.
48.
Sargin
B
,
Choudhary
C
,
Crosetto
N
, et al
.
Flt3-dependent transformation by inactivating c-Cbl mutations in AML
.
Blood
.
2007
;
110
(
3
):
1004
-
1012
.
49.
Taylor
SJ
,
Thien
CBF
,
Dagger
SA
, et al
.
Loss of c-Cbl E3 ubiquitin ligase activity enhances the development of myeloid leukemia in FLT3-ITD mutant mice
.
Exp Hematol
.
2015
;
43
(
3
):
191
-
206.e1
.
50.
Rathinam
C
,
Thien
CBF
,
Flavell
RA
,
Langdon
WY
.
Myeloid leukemia development in c-Cbl RING finger mutant mice is dependent on FLT3 signaling
.
Cancer Cell
.
2010
;
18
(
4
):
341
-
352
.
51.
Kennedy
VE
,
Smith
CC
.
FLT3 mutations in acute myeloid leukemia: key concepts and emerging controversies
.
Front Oncol
.
2020
;
10
:
612880
.
52.
Lam
SSY
,
Leung
AYH
.
Overcoming resistance to FLT3 inhibitors in the treatment of FLT3-mutated AML
.
Int J Mol Sci
.
2020
;
21
(
4
):
1537
.
53.
Bai
Y
,
Luo
Y
,
Liu
S
, et al
.
PRL-1 protein promotes ERK1/2 and RhoA protein activation through a non-canonical interaction with the Src homology 3 domain of p115 Rho GTPase-activating protein
.
J Biol Chem
.
2011
;
286
(
49
):
42316
-
42324
.
You do not currently have access to this content.

Sign in via your Institution