• CAR T-cell engineering at GSH6 achieves long-term tumor control.

  • Validated criteria identify targetable extragenic GSHs.

Cell therapies that rely on engineered immune cells can be enhanced by achieving uniform and controlled transgene expression in order to maximize T-cell function and achieve predictable patient responses. Although they are effective, current genetic engineering strategies that use γ-retroviral, lentiviral, and transposon-based vectors to integrate transgenes, unavoidably produce variegated transgene expression in addition to posing a risk of insertional mutagenesis. In the setting of chimeric antigen receptor (CAR) therapy, inconsistent and random CAR expression may result in tonic signaling, T-cell exhaustion, and variable T-cell persistence. Here, we report and validate an algorithm for the identification of extragenic genomic safe harbors (GSH) that can be efficiently targeted for DNA integration and can support sustained and predictable CAR expression in human peripheral blood T cells. The algorithm is based on 7 criteria established to minimize genotoxicity by directing transgene integration away from functionally important genomic elements, maximize efficient CRISPR/Cas9–mediated targeting, and avert transgene silencing over time. T cells engineered to express a CD19 CAR at GSH6, which meets all 7 criteria, are curative at low cell dose in a mouse model of acute lymphoblastic leukemia, matching the potency of CAR T cells engineered at the TRAC locus and effectively resisting tumor rechallenge 100 days after their infusion. The identification of functional extragenic GSHs thus expands the human genome available for therapeutic precision engineering.

1.
Dunbar
CE
,
High
KA
,
Joung
JK
,
Kohn
DB
,
Ozawa
K
,
Sadelain
M
.
Gene therapy comes of age
.
Science
.
2018
;
359
(
6372
):
eaan4672
.
2.
Sadelain
M
,
Rivière
I
,
Riddell
S
.
Therapeutic T cell engineering
.
Nature
.
2017
;
545
(
7655
):
423
-
431
.
3.
June
CH
,
Sadelain
M
.
Chimeric antigen receptor therapy
.
N Engl J Med
.
2018
;
379
(
1
):
64
-
73
.
4.
Dunbar
CE
.
Stem cell gene transfer: Insights into integration and hematopoiesis from primate genetic marking studies
.
Ann N Y Acad Sci
.
2005
;
1044
:
178
-
182
.
5.
Bushman
F
,
Lewinski
M
,
Ciuffi
A
, et al
.
Genome-wide analysis of retroviral DNA integration
.
Nat Rev Microbiol
.
2005
;
3
(
11
):
848
-
858
.
6.
Schwarzwaelder
K
,
Howe
SJ
,
Schmidt
M
, et al
.
Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo
.
J Clin Invest
.
2007
;
117
(
8
):
2241
-
2249
.
7.
Rivella
S
,
Sadelain
M
.
Genetic treatment of severe hemoglobinopathies: the combat against transgene variegation and transgene silencing
.
Semin Hematol
.
1998
;
35
(
2
):
112
-
125
.
8.
Ellis
J
.
Silencing and variegation of gammaretrovirus and lentivirus vectors
.
Hum Gene Ther
.
2005
;
16
(
11
):
1241
-
1246
.
9.
Schroder
ARW
,
Shinn
P
,
Chen
H
,
Berry
C
,
Ecker
JR
,
Bushman
F
.
HIV-1 integration in the human genome favors sctive genes and local hotspots
.
Cell
.
2002
;
110
(
4
):
521
-
529
.
10.
Nienhuis
AW
,
Dunbar
CE
,
Sorrentino
BP
.
Genotoxicity of retroviral integration in hematopoietic cells
.
Mol Ther
.
2006
;
13
(
6
):
1031
-
1049
.
11.
Stein
S
,
Ott
MG
,
Schultze-Strasser
S
, et al
.
Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease
.
Nat Med
.
2010
;
16
(
2
):
198
-
204
.
12.
Hacein-Bey-Abina
S
,
Garrigue
A
,
Wang
GP
, et al
.
Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1
.
J Clin Invest
.
2008
;
118
(
9
):
3132
-
3142
.
13.
Howe
SJ
,
Mansour
MR
,
Schwarzwaelder
K
, et al
.
Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients
.
J Clin Invest
.
2008
;
118
(
9
):
3143
-
3150
.
14.
Kohn
DB
,
Sadelain
M
,
Glorioso
JC
.
Occurrence of leukaemia following gene therapy of X-linked SCID
.
Nat Rev Cancer
.
2003
;
3
(
7
):
477
-
488
.
15.
Cavazzana-Calvo
M
,
Payen
E
,
Negre
O
, et al
.
Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia
.
Nature
.
2010
;
467
(
7313
):
318
-
322
.
16.
Fraietta
JA
,
Nobles
CL
,
Sammons
MA
, et al
.
Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells
.
Nature
.
2018
;
558
(
7709
):
307
-
312
.
17.
Shah
NN
,
Qin
H
,
Yates
B
, et al
.
Clonal expansion of CAR T cells harboring lentivector integration in the CBL gene following anti-CD22 CAR T-cell therapy
.
Blood Adv
.
2019
;
3
(
15
):
2317
-
2322
.
18.
Eyquem
J
,
Mansilla-Soto
J
,
Giavridis
T
, et al
.
Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection
.
Nature
.
2017
;
543
(
7643
):
113
-
117
.
19.
Sadelain
M
,
Papapetrou
EP
,
Bushman
FD
.
Safe harbours for the integration of new DNA in the human genome
.
Nat Rev Cancer
.
2011
;
12
(
1
):
51
-
58
.
20.
Kotin
RM
,
Linden
RM
,
Berns
KI
.
Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination
.
EMBO J
.
1992
;
11
(
13
):
5071
-
5078
.
21.
Irion
S
,
Luche
H
,
Gadue
P
,
Fehling
HJ
,
Kennedy
M
,
Keller
G
.
Identification and targeting of the ROSA26 locus in human embryonic stem cells
.
Nat Biotechnol
.
2007
;
25
(
12
):
1477
-
1482
.
22.
Lombardo
A
,
Genovese
P
,
Beausejour
CM
, et al
.
Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery
.
Nat Biotechnol
.
2007
;
25
(
11
):
1298
-
1306
.
23.
DeKelver
RC
,
Choi
VM
,
Moehle
EA
, et al
.
Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome
.
Genome Res
.
2010
;
20
(
8
):
1133
-
1142
.
24.
Papapetrou
EP
,
Schambach
A
.
Gene insertion into genomic safe harbors for human gene therapy
.
Mol Ther
.
2016
;
24
(
4
):
678
-
684
.
25.
Papapetrou
EP
,
Lee
G
,
Malani
N
, et al
.
Genomic safe harbors permit high β-globin transgene expression in thalassemia induced pluripotent stem cells
.
Nat Biotechnol
.
2011
;
29
(
1
):
73
-
78
.
26.
Beermann
J
,
Piccoli
MT
,
Viereck
J
,
Thum
T
.
Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches
.
Physiol Rev
.
2016
;
96
(
4
):
1297
-
1325
.
27.
Esteller
M
.
Non-coding RNAs in human disease
.
Nat Rev Genet
.
2011
;
12
(
12
):
861
-
874
.
28.
Verkuijl
SA
,
Rots
MG
.
The influence of eukaryotic chromatin state on CRISPR–Cas9 editing efficiencies
.
Curr Opin Biotechnol
.
2019
;
55
:
68
-
73
.
29.
Perez
AR
,
Pritykin
Y
,
Vidigal
JA
, et al
.
GuideScan software for improved single and paired CRISPR guide RNA design
.
Nat Biotechnol
.
2017
;
35
(
4
):
347
-
349
.
30.
Doench
JG
,
Fusi
N
,
Sullender
M
, et al
.
Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9
.
Nat Biotechnol
.
2016
;
34
:
184
-
191
.
31.
Hendel
A
,
Bak
RO
,
Clark
JT
, et al
.
Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells
.
Nat Biotechnol
.
2015
;
33
(
9
):
985
-
989
.
32.
Van Overbeek
M
,
Capurso
D
,
Carter
MM
, et al
.
DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks
.
Mol Cell
.
2016
;
63
(
4
):
633
-
646
.
33.
Feucht
J
,
Sun
J
,
Eyquem
J
, et al
.
Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency
.
Nat Med
.
2019
;
25
(
1
):
82
-
88
.
34.
Eyquem
J
,
Poirot
L
,
Galetto
R
,
Scharenberg
AM
,
Smith
J
.
Characterization of three loci for homologous gene targeting and transgene expression
.
Biotechnol Bioeng
.
2013
;
110
(
8
):
2225
-
2235
.
35.
MacLeod
DT
,
Antony
J
,
Martin
AJ
, et al
.
Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of allogeneic gene-edited CAR T Cells
.
Mol Ther
.
2017
;
25
(
4
):
949
-
961
.
36.
Roth
TL
,
Puig-Saus
C
,
Yu
R
, et al
.
Reprogramming human T cell function and specificity with non-viral genome targeting
.
Nature
.
2018
;
559
(
7714
):
405
-
409
.
37.
Sachdeva
M
,
Busser
BW
,
Temburni
S
, et al
.
Repurposing endogenous immune pathways to tailor and control chimeric antigen receptor T cell functionality
.
Nat Commun
.
2019
;
10
(
1
):
5100
.
38.
Roth
TL
,
Li
PJ
,
Blaeschke
F
, et al
.
Pooled knockin targeting for genome engineering of cellular immunotherapies
.
Cell
.
2020
;
181
(
3
):
728
-
744.e21
.
39.
Liu
M
,
Maurano
MT
,
Wang
H
, et al
.
Genomic discovery of potent chromatin insulators for human gene therapy
.
Nat Biotechnol
.
2015
;
33
(
2
):
198
-
203
.
40.
Walters
MC
,
Fiering
S
,
Bouhassira
EE
, et al
.
The chicken β-globin 5′HS4 boundary element blocks enhancer-mediated suppression of silencing
.
Mol Cell Biol
.
1999
;
19
(
5
):
3714
-
3726
.
41.
Rivella
S
,
Callegari
JA
,
May
C
,
Tan
CW
,
Sadelain
M
.
The cHS4 insulator increases the probability of retroviral expression at random chromosomal integration sites
.
J Virol
.
2000
;
74
(
10
):
4679
-
4687
.
42.
Zhao
Z
,
Condomines
M
,
Van Der Stegen
SJC
, et al
.
Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells
.
Cancer Cell
.
2015
;
28
(
4
):
415
-
428
.
43.
Blanco
E
,
Izotova
N
,
Booth
C
,
Thrasher
AJ
.
Immune reconstitution after gene therapy approaches in patients with X-linked severe combined immunodeficiency disease
.
Front Immunol
.
2020
;
11
:
608653
.
44.
Hacein-Bey-Abina
S
,
Pai
S-Y
,
Gaspar
HB
, et al
.
A Modified γ-retrovirus vector for X-linked severe combined immunodeficiency
.
N Engl J Med
.
2014
;
371
(
15
):
1407
-
1417
.
45.
Klatt
D
,
Cheng
E
,
Hoffmann
Di
, et al
.
Differential transgene silencing of myeloid-specific promoters in the AAVS1 safe harbor locus of induced pluripotent stem cell-derived myeloid cells
.
Hum Gene Ther
.
2020
;
31
(
3-4
):
199
-
210
.
46.
Lazzarotto
CR
,
Malinin
NL
,
Li
Y
, et al
.
CHANGE-seq reveals genetic and epigenetic effects on CRISPR–Cas9 genome-wide activity
.
Nat Biotechnol
.
2020
;
38
(
11
):
1317
-
1327
.
47.
Wu
X
,
Scott
DA
,
Kriz
AJ
, et al
.
Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells
.
Nat Biotechnol
.
2014
;
32
(
7
):
670
-
676
.
48.
Chen
X
,
Rinsma
M
,
Janssen
JM
,
Liu
J
,
Maggio
I
,
Goncalves
MAFV
.
Probing the impact of chromatin conformation on genome editing tools
.
Nucleic Acids Res
.
2016
;
44
(
13
):
6482
-
6492
.
49.
Jensen
KT
,
Fløe
L
,
Petersen
TS
, et al
.
Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency
.
FEBS Lett
.
2017
;
591
(
13
):
1892
-
1901
.
50.
Chen
Y
,
Zeng
S
,
Hu
R
, et al
.
Using local chromatin structure to improve CRISPR / Cas9 efficiency in zebrafish
.
PLoS One
.
2017
;
12
(
8
):
e0182528
.
51.
Hinz
JM
,
Laughery
MF
,
Wyrick
JJ
.
Nucleosomes inhibit Cas9 endonuclease activity in vitro
.
Biochemistry
.
2015
;
54
(
48
):
7063
-
7066
.
52.
Knight
SC
,
Xie
L
,
Deng
W
, et al
.
Dynamics of CRISPR-Cas9 genome interrogation in living cells
.
Science
.
2015
;
350
(
6262
):
823
-
826
.
53.
de Wit
E
,
Vos
ESM
,
Holwerda
SJB
, et al
.
CTCF binding polarity determines chromatin looping
.
Mol Cell
.
2015
;
60
(
4
):
676
-
684
.
54.
Ghosh
A
,
Smith
M
,
James
SE
, et al
.
Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity
.
Nat Med
.
2017
;
23
(
2
):
242
-
249
.
55.
Stenger
D
,
Stief
TA
,
Kaeuferle
T
, et al
.
Endogenous TCR promotes in vivo persistence of CD19-CAR-T cells compared to a CRISPR/Cas9-mediated TCR knockout CAR
.
Blood
.
2020
;
136
(
12
):
1407
-
1418
.
56.
Lapteva
N
,
Gilbert
M
,
Diaconu
I
, et al
.
T-cell receptor stimulation enhances the expansion and function of CD19 chimeric antigen receptor–expressing T cells
.
Clin Cancer Res
.
2019
;
25
(
24
):
7340
-
7350
.
57.
Nahmad
AD
,
Reuveni
E
,
Goldschmidt
E
, et al
.
Frequent aneuploidy in primary human T cells after CRISPR–Cas9 cleavage
.
Nat Biotechnol
.
2022
;
40
(
12
):
1807
-
1813
.
58.
Corces
MR
,
Buenrostro
JD
,
Wu
B
, et al
.
Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution
.
Nat Genet
.
2016
;
48
(
10
):
1193
-
1203
.
You do not currently have access to this content.
Sign in via your Institution