• Tumor-associated MNP are diverse and spatially polarized: cDC2 colocalize with malignant HRSCs; plasmacytoid and activated DCs are excluded.

  • DCs, monocytes, and macrophages exist in an inflammatory niche in close proximity to HRSCs, and all express inhibitory molecules.

Classic Hodgkin lymphoma (cHL) has a rich immune infiltrate, which is an intrinsic component of the neoplastic process. Malignant Hodgkin Reed-Sternberg cells (HRSCs) create an immunosuppressive microenvironment by the expression of regulatory molecules, preventing T-cell activation. It has also been demonstrated that mononuclear phagocytes (MNPs) in the vicinity of HRSCs express similar regulatory mechanisms in parallel, and their presence in tissue is associated with inferior patient outcomes. MNPs in cHL have hitherto been identified by a small number of canonical markers and are usually described as tumor-associated macrophages. The organization of MNP networks and interactions with HRSCs remains unexplored at high resolution. Here, we defined the global immune-cell composition of cHL and nonlymphoma lymph nodes, integrating data across single-cell RNA sequencing, spatial transcriptomics, and multiplexed immunofluorescence. We observed that MNPs comprise multiple subsets of monocytes, macrophages, and dendritic cells (DCs). Classical monocytes, macrophages and conventional DC2s were enriched in the vicinity of HRSCs, but plasmacytoid DCs and activated DCs were excluded. Unexpectedly, cDCs and monocytes expressed immunoregulatory checkpoints PD-L1, TIM-3, and the tryptophan-catabolizing protein IDO, at the same level as macrophages. Expression of these molecules increased with age. We also found that classical monocytes are important signaling hubs, potentially controlling the retention of cDC2 and ThExh via CCR1-, CCR4-, CCR5-, and CXCR3-dependent signaling. Enrichment of the cDC2-monocyte-macrophage network in diagnostic biopsies is associated with early treatment failure. These results reveal unanticipated complexity and spatial polarization within the MNP compartment, further demonstrating their potential roles in immune evasion by cHL.

1.
Sasse
S
,
Bröckelmann
PJ
,
Goergen
H
, et al
.
Long-term follow-up of contemporary treatment in early-stage hodgkin lymphoma: updated analyses of the German Hodgkin Study Group HD7, HD8, HD10, and HD11 trials
.
J Clin Oncol
.
2017
;
35
(
18
):
1999
-
2007
.
2.
Borchmann
P
,
Goergen
H
,
Kobe
C
, et al
.
PET-guided treatment in patients with advanced-stage Hodgkin’s lymphoma (HD18): final results of an open-label, international, randomised phase 3 trial by the German Hodgkin Study Group
.
Lancet
.
2017
;
390
(
10114
):
2790
-
2802
.
3.
Casasnovas
R-O
,
Bouabdallah
R
,
Brice
P
, et al
.
PET-adapted treatment for newly diagnosed advanced Hodgkin lymphoma (AHL2011): a randomised, multicentre, non-inferiority, phase 3 study
.
Lancet Oncol
.
2019
;
20
(
2
):
202
-
215
.
4.
Connors
JM
,
Cozen
W
,
Steidl
C
, et al
.
Hodgkin lymphoma
.
Nat Rev Dis Primers
.
2020
;
6
(
1
):
61
.
5.
Roemer
MGM
,
Redd
RA
,
Cader
FZ
, et al
.
Major histocompatibility complex class ii and programmed death ligand 1 expression predict outcome after programmed death 1 blockade in classic hodgkin lymphoma
.
J Clin Oncol
.
2018
;
36
(
10
):
942
-
950
.
6.
Green
MR
,
Monti
S
,
Rodig
SJ
, et al
.
Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma
.
Blood
.
2010
;
116
(
17
):
3268
-
3277
.
7.
Carey
CD
,
Gusenleitner
D
,
Lipschitz
M
, et al
.
Topological analysis reveals a PD-L1-associated microenvironmental niche for Reed-Sternberg cells in Hodgkin lymphoma
.
Blood
.
2017
;
130
(
22
):
2420
-
2430
.
8.
Mulder
K
,
Patel
AA
,
Kong
WT
, et al
.
Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease
.
Immunity
.
2021
;
54
(
8
):
1883
-
1900.e5
.
9.
James
KR
,
Gomes
T
,
Elmentaite
R
, et al
.
Distinct microbial and immune niches of the human colon
.
Nat Immunol
.
2020
;
21
(
3
):
343
-
353
.
10.
Aoki
T
,
Chong
LC
,
Takata
K
, et al
.
Single-cell transcriptome analysis reveals disease-defining t-cell subsets in the tumor microenvironment of classic hodgkin lymphoma
.
Cancer Discov
.
2020
;
10
(
3
):
406
-
421
.
11.
Melsted
P
,
Ntranos
V
,
Pachter
L
.
The barcode, UMI, set format and BUStools
.
Bioinformatics
.
2019
;
35
(
21
):
4472
-
4473
.
12.
Lun
ATL
,
Riesenfeld
S
,
Andrews
T
, et al
.
EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data
.
Genome Biol
.
2019
;
20
(
1
):
63
.
13.
Lopez
R
,
Regier
J
,
Cole
MB
,
Jordan
MI
,
Yosef
N
.
Deep generative modeling for single-cell transcriptomics
.
Nat Methods
.
2018
;
15
(
12
):
1053
-
1058
.
14.
Young
MD
,
Mitchell
TJ
,
Vieira Braga
FA
, et al
.
Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors
.
Science
.
2018
;
361
(
6402
):
594
-
599
.
15.
Domínguez
CC
,
Gomes
T
,
Jarvis
LB
, et al
.
Cross-tissue immune cell analysis reveals tissue-specific adaptations and clonal architecture across the human body
.
Science
.
2022
;
376
(
6594
):
eabl5197
.
16.
King
HW
,
Orban
N
,
Riches
JC
, et al
.
Single-cell analysis of human B cell maturation predicts how antibody class switching shapes selection dynamics
.
Sci Immunol
.
2021
;
6
(
56
):
eabe6291
.
17.
Garreta
R
,
Moncecchi
G
. Learning scikit-learn: machine learning in python.
Packt Publishing Ltd
;
2013
.
18.
Dann
E
,
Henderson
NC
,
Teichmann
SA
,
Morgan
MD
,
Marioni
JC
.
Differential abundance testing on single-cell data using k-nearest neighbor graphs
.
Nat Biotechnol
.
2022
;
40
(
2
):
245
-
253
.
19.
Efremova
M
,
Vento-Tormo
M
,
Teichmann
SA
,
Vento-Tormo
R
.
CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes
.
Nat Protoc
.
2020
;
15
(
4
):
1484
-
1506
.
20.
Davis
S
,
Meltzer
PS
.
GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor
.
Bioinformatics
.
2007
;
23
(
14
):
1846
-
1847
.
21.
Ritchie
ME
,
Phipson
B
,
Wu
D
, et al
.
limma powers differential expression analyses for RNA-sequencing and microarray studies
.
Nucleic Acids Res
.
2015
;
43
(
7
):
e47
-
e59
.
22.
Russo
PST
,
Ferreira
GR
,
Cardozo
LE
, et al
.
CEMiTool: a Bioconductor package for performing comprehensive modular co-expression analyses
.
BMC Bioinformatics
.
2018
;
19
(
1
):
56
-
68
.
23.
Wu
T
,
Hu
E
,
Xu
S
, et al
.
clusterProfiler 4.0: A universal enrichment tool for interpreting omics data
.
Innovation (Camb)
.
2021
;
2
(
3
):
100141
-
100151
.
24.
Garcia-Alonso
L
,
Holland
CH
,
Ibrahim
MM
,
Turei
D
,
Saez-Rodriguez
J
.
Benchmark and integration of resources for the estimation of human transcription factor activities
.
Genome Res
.
2019
;
29
(
8
):
1363
-
1375
.
25.
Türei
D
,
Korcsmáros
T
,
Saez-Rodriguez
J
.
OmniPath: guidelines and gateway for literature-curated signaling pathway resources
.
Nat Methods
.
2016
;
13
(
12
):
966
-
967
.
26.
Levine
JH
,
Simonds
EF
,
Bendall
SC
, et al
.
Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis
.
Cell
.
2015
;
162
(
1
):
184
-
197
.
27.
Traag
VA
,
Waltman
L
,
van Eck
NJ
.
From Louvain to Leiden: guaranteeing well-connected communities
.
Sci Rep
.
2019
;
9
(
1
):
5233
-
5244
.
28.
Love
MI
,
Huber
W
,
Anders
S
.
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
.
Genome Biol
.
2014
;
15
(
12
):
550
-
570
.
29.
Feng
Z
,
Puri
S
,
Moudgil
T
, et al
.
Multispectral imaging of formalin-fixed tissue predicts ability to generate tumor-infiltrating lymphocytes from melanoma
.
J Immunother Cancer
.
2015
;
3
:
47
-
57
.
30.
Tóth
ZE
,
Mezey
E
.
Simultaneous visualization of multiple antigens with tyramide signal amplification using antibodies from the same species
.
J Histochem Cytochem
.
2007
;
55
(
6
):
545
-
554
.
31.
Campo
E
,
Jaffe
ES
,
Cook
JR
, et al
.
The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee
.
Blood
.
2022
;
140
(
11
):
1229
-
1253
.
32.
Aoki
T
,
Chong
LC
,
Takata
K
, et al
.
Single-cell profiling reveals the importance of CXCL13/CXCR5 axis biology in lymphocyte-rich classic Hodgkin lymphoma
.
Proc Natl Acad Sci U S A
.
2021
;
118
(
41
):
e2105822118
.
33.
Steidl
C
,
Diepstra
A
,
Lee
T
, et al
.
Gene expression profiling of microdissected Hodgkin Reed-Sternberg cells correlates with treatment outcome in classical Hodgkin lymphoma
.
Blood
.
2012
;
120
(
17
):
3530
-
3540
.
34.
Nagel
D
,
Vincendeau
M
,
Eitelhuber
AC
,
Krappmann
D
.
Mechanisms and consequences of constitutive NF-κB activation in B-cell lymphoid malignancies
.
Oncogene
.
2014
;
33
(
50
):
5655
-
5665
.
35.
Villani
A-C
,
Satija
R
,
Reynolds
G
, et al
.
Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
.
Science
.
2017
;
356
(
6335
):
eaah4573
.
36.
Park
J-E
,
Botting
RA
,
Domínguez Conde
C
, et al
.
A cell atlas of human thymic development defines T cell repertoire formation
.
Science
.
2020
;
367
(
6480
):
eaay3224
.
37.
Madissoon
E
,
Wilbrey-Clark
A
,
Miragaia
RJ
, et al
.
scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation
.
Genome Biol
.
2019
;
21
(
1
):
1
.
38.
Maier
B
,
Leader
AM
,
Chen
ST
, et al
.
A conserved dendritic-cell regulatory program limits antitumour immunity
.
Nature
.
2020
;
580
(
7802
):
257
-
262
.
39.
Steidl
C
,
Lee
T
,
Shah
SP
, et al
.
Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma
.
N Engl J Med
.
2010
;
362
(
10
):
875
-
885
.
40.
Tan
KL
,
Scott
DW
,
Hong
F
, et al
.
Tumor-associated macrophages predict inferior outcomes in classic Hodgkin lymphoma: a correlative study from the E2496 Intergroup trial
.
Blood
.
2012
;
120
(
16
):
3280
-
3287
.
41.
Chen
RJ
,
Lu
MY
,
Williamson
DFK
, et al
.
Pan-cancer integrative histology-genomic analysis via multimodal deep learning
.
Cancer Cell
.
2022
;
40
(
8
):
865
-
878.e6
.
42.
Kuett
L
,
Catena
R
,
Özcan
A
, et al
.
Three-dimensional imaging mass cytometry for highly multiplexed molecular and cellular mapping of tissues and the tumor microenvironment
.
Nat Cancer
.
2022
;
3
(
1
):
122
-
133
.
43.
Cassetta
L
,
Pollard
JW
.
Targeting macrophages: therapeutic approaches in cancer
.
Nat Rev Drug Discov
.
2018
;
17
(
12
):
887
-
904
.
44.
Teng
K-Y
,
Han
J
,
Zhang
X
, et al
.
Blocking the CCL2-CCR2 axis using CCL2-neutralizing antibody is an effective therapy for hepatocellular cancer in a mouse model
.
Mol Cancer Ther
.
2017
;
16
(
2
):
312
-
322
.
45.
Pyonteck
SM
,
Akkari
L
,
Schuhmacher
AJ
, et al
.
CSF-1R inhibition alters macrophage polarization and blocks glioma progression
.
Nat Med
.
2013
;
19
(
10
):
1264
-
1272
.
46.
Saito
T
,
Takayama
T
,
Osaki
T
, et al
.
Combined mobilization and stimulation of tumor-infiltrating dendritic cells and natural killer cells with Flt3 ligand and IL-18 in vivo induces systemic antitumor immunity
.
Cancer Sci
.
2008
;
99
(
10
):
2028
-
2036
.
47.
Klichinsky
M
,
Ruella
M
,
Shestova
O
, et al
.
Human chimeric antigen receptor macrophages for cancer immunotherapy
.
Nat Biotechnol
.
2020
;
38
(
8
):
947
-
953
.
48.
Patel
SS
,
Weirather
JL
,
Lipschitz
M
, et al
.
The microenvironmental niche in classic Hodgkin lymphoma is enriched for CTLA-4-positive T cells that are PD-1-negative
.
Blood
.
2019
;
134
(
23
):
2059
-
2069
.
49.
Haderk
F
,
Schulz
R
,
Iskar
M
, et al
.
Tumor-derived exosomes modulate PD-L1 expression in monocytes
.
Sci Immunol
.
2017
;
2
(
13
):
eaah5509
.
50.
Karihtala
K
,
Leivonen
S-K
,
Karjalainen-Lindsberg
M-L
, et al
.
Checkpoint protein expression in the tumor microenvironment defines the outcome of classical Hodgkin lymphoma patients
.
Blood Adv
.
2022
;
6
(
6
):
1919
-
1931
.
51.
Arlauckas
SP
,
Garris
CS
,
Kohler
RH
, et al
.
In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy
.
Sci Transl Med
.
2017
;
9
(
389
):
eaal3604
.
52.
Reinke
S
,
Bröckelmann
PJ
,
Iaccarino
I
, et al
.
Tumor and microenvironment response but no cytotoxic T-cell activation in classic Hodgkin lymphoma treated with anti-PD1
.
Blood
.
2020
;
136
(
25
):
2851
-
2863
.
53.
Jalali
S
,
Price-Troska
T
,
Bothun
C
, et al
.
Reverse signaling via PD-L1 supports malignant cell growth and survival in classical Hodgkin lymphoma
.
Blood Cancer J
.
2019
;
9
(
3
):
22
-
30
.
You do not currently have access to this content.
Sign in via your Institution