• Correction of the sickle-cell mutation and disease phenotypes is achieved by in vivo HSC transduction with vectorized prime editors.

  • Our approach for in vivo HSC prime editing that does not require HSC transplantation and myeloablation should simplify HSC gene therapy.

Sickle cell disease (SCD) is a monogenic disease caused by a nucleotide mutation in the β-globin gene. Current gene therapy studies are mainly focused on lentiviral vector–mediated gene addition or CRISPR/Cas9–mediated fetal globin reactivation, leaving the root cause unfixed. We developed a vectorized prime editing system that can directly repair the SCD mutation in hematopoietic stem cells (HSCs) in vivo in a SCD mouse model (CD46/Townes mice). Our approach involved a single intravenous injection of a nonintegrating, prime editor–expressing viral vector into mobilized CD46/Townes mice and low-dose drug selection in vivo. This procedure resulted in the correction of ∼40% of βS alleles in HSCs. On average, 43% of sickle hemoglobin was replaced by adult hemoglobin, thereby greatly mitigating the SCD phenotypes. Transplantation in secondary recipients demonstrated that long-term repopulating HSCs were edited. Highly efficient target site editing was achieved with minimal generation of insertions and deletions and no detectable off-target editing. Because of its simplicity and portability, our in vivo prime editing approach has the potential for application in resource-poor countries where SCD is prevalent.

1.
Kato
GJ
,
Piel
FB
,
Reid
CD
, et al
.
Sickle cell disease
.
Nat Rev Dis Primers
.
2018
;
4
:
18010
.
2.
Kanter
J
,
Walters
MC
,
Krishnamurti
L
, et al
.
Biologic and clinical efficacy of LentiGlobin for sickle cell disease
.
N Engl J Med
.
2022
;
386
(
7
):
617
-
628
.
3.
Frangoul
H
,
Altshuler
D
,
Cappellini
MD
, et al
.
CRISPR-Cas9 gene editing for sickle cell disease and beta-thalassemia
.
N Engl J Med
.
2021
;
384
(
3
):
252
-
260
.
4.
Esrick
EB
,
Lehmann
LE
,
Biffi
A
, et al
.
Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease
.
N Engl J Med
.
2021
;
384
(
3
):
205
-
215
.
5.
Habib
O
,
Habib
G
,
Hwang
GH
,
Bae
S
.
Comprehensive analysis of prime editing outcomes in human embryonic stem cells
.
Nucleic Acids Res
.
2022
;
50
(
2
):
1187
-
1197
.
6.
Jin
S
,
Lin
Q
,
Luo
Y
, et al
.
Genome-wide specificity of prime editors in plants
.
Nat Biotechnol
.
2021
;
39
(
10
):
1292
-
1299
.
7.
Kim
DY
,
Moon
SB
,
Ko
JH
,
Kim
YS
,
Kim
D
.
Unbiased investigation of specificities of prime editing systems in human cells
.
Nucleic Acids Res
.
2020
;
48
(
18
):
10576
-
10589
.
8.
Anzalone
AV
,
Randolph
PB
,
Davis
JR
, et al
.
Search-and-replace genome editing without double-strand breaks or donor DNA
.
Nature
.
2019
;
576
(
7785
):
149
-
157
.
9.
Chen
PJ
,
Hussmann
JA
,
Yan
J
, et al
.
Enhanced prime editing systems by manipulating cellular determinants of editing outcomes
.
Cell
.
2021
;
184
(
22
):
5635
-
5652.e29
.
10.
Nelson
JW
,
Randolph
PB
,
Shen
SP
, et al
.
Engineered pegRNAs improve prime editing efficiency
.
Nat Biotechnol
.
2022
;
40
(
3
):
402
-
410
.
11.
Bock
D
,
Rothgangl
T
,
Villiger
L
, et al
.
In vivo prime editing of a metabolic liver disease in mice
.
Sci Transl Med
.
2022
;
14
(
636
):
eabl9238
.
12.
Zheng
C
,
Liang
SQ
,
Liu
B
, et al
.
A flexible split prime editor using truncated reverse transcriptase improves dual-AAV delivery in mouse liver
.
Mol Ther
.
2022
;
30
(
3
):
1343
-
1351
.
13.
Richter
M
,
Saydaminova
K
,
Yumul
R
, et al
.
In vivo transduction of primitive mobilized hematopoietic stem cells after intravenous injection of integrating adenovirus vectors
.
Blood
.
2016
;
128
(
18
):
2206
-
2217
.
14.
Li
C
,
Georgakopoulou
A
,
Mishra
A
, et al
.
In vivo HSPC gene therapy with base editors allows for efficient reactivation of fetal gamma-globin in beta-YAC mice
.
Blood Adv
.
2021
;
5
(
4
):
1122
-
1135
.
15.
Li
C
,
Psatha
N
,
Sova
P
, et al
.
Reactivation of gamma-globin in adult beta-YAC mice after ex vivo and in vivo hematopoietic stem cell genome editing
.
Blood
.
2018
;
131
(
26
):
2915
-
2928
.
16.
Wang
H
,
Richter
M
,
Psatha
N
, et al
.
A combined in vivo hsc transduction/selection approach results in efficient and stable gene expression in peripheral blood cells in mice
.
Mol Ther Methods Clin Dev
.
2018
;
8
:
52
-
64
.
17.
Neff
T
,
Horn
PA
,
Peterson
LJ
, et al
.
Methylguanine methyltransferase-mediated in vivo selection and chemoprotection of allogeneic stem cells in a large-animal model
.
J Clin Invest
.
2003
;
112
(
10
):
1581
-
1588
.
18.
Beard
BC
,
Trobridge
GD
,
Ironside
C
,
McCune
JS
,
Adair
JE
,
Kiem
HP
.
Efficient and stable MGMT-mediated selection of long-term repopulating stem cells in nonhuman primates
.
J Clin Invest
.
2010
;
120
(
7
):
2345
-
2354
.
19.
Gori
JL
,
Beard
BC
,
Ironside
C
,
Karponi
G
,
Kiem
HP
.
In vivo selection of autologous MGMT gene-modified cells following reduced-intensity conditioning with BCNU and temozolomide in the dog model
.
Cancer Gene Ther
.
2012
;
19
(
8
):
523
-
529
.
20.
Adair
JE
,
Johnston
SK
,
Mrugala
MM
, et al
.
Gene therapy enhances chemotherapy tolerance and efficacy in glioblastoma patients
.
J Clin Invest
.
2014
;
124
(
9
):
4082
-
4092
.
21.
Wang
H
,
Georgakopoulou
A
,
Psatha
N
, et al
.
In vivo hematopoietic stem cell gene therapy ameliorates murine thalassemia intermedia
.
J Clin Invest
.
2019
;
129
(
2
):
598
-
615
.
22.
Wang
H
,
Georgakopoulou
A
,
Li
C
, et al
.
Curative in vivo hematopoietic stem cell gene therapy of murine thalassemia using large regulatory elements
.
JCI Insight
.
2020
;
5
(
16
):
e139538
.
23.
Li
C
,
Wang
H
,
Georgakopoulou
A
,
Gil
S
,
Yannaki
E
,
Lieber
A
.
In vivo HSC gene therapy using a bi-modular HDAd5/35++ vector cures sickle cell disease in a mouse model
.
Mol Ther
.
2021
;
29
(
2
):
822
-
837
.
24.
Psatha
N
,
Georgakopoulou
A
,
Li
C
, et al
.
Enhanced HbF reactivation by multiplex mutagenesis of thalassemic CD34+ cells in vitro and in vivo
.
Blood
.
2021
;
138
(
17
):
1540
-
1553
.
25.
Li
C
,
Wang
H
,
Germond
A
, et al
.
In vivo HSC gene therapy for hemoglobinopathies: a proof of concept evaluation in rhesus macaques [abstract]
.
Blood
.
2020
;
136
(
suppl 1
):
46
-
47
.
26.
Wang
H
,
Germond
A
,
Li
C
, et al
.
In vivo HSC transduction in rhesus macaques with an HDAd5/3+ vector targeting desmoglein 2 and transiently over-expressing cxcr4
.
Blood Adv
.
2022
;
6
(
15
):
4360
-
4372
.
27.
Wu
L-C
,
Sun
C-W
,
Ryan
TM
,
Pawlik
KM
,
Ren
J
,
Townes
TM
.
Correction of sickle cell disease by homologous recombination in embryonic stem cells
.
Blood
.
2006
;
108
(
4
):
1183
-
1188
.
28.
Luck
L
,
Zeng
L
,
Hiti
AL
,
Weinberg
KI
,
Malik
P
.
Human CD34(+) and CD34(+)CD38(-) hematopoietic progenitors in sickle cell disease differ phenotypically and functionally from normal and suggest distinct subpopulations that generate F cells
.
Exp Hematol
.
2004
;
32
(
5
):
483
-
493
.
29.
Kemper
C
,
Leung
M
,
Stephensen
CB
, et al
.
Membrane cofactor protein (MCP; CD46) expression in transgenic mice
.
Clin Exp Immunol
.
2001
;
124
(
2
):
180
-
189
.
30.
Saydaminova
K
,
Ye
X
,
Wang
H
, et al
.
Efficient genome editing in hematopoietic stem cells with helper-dependent Ad5/35 vectors expressing site-specific endonucleases under microRNA regulation
.
Mol Ther Methods Clin Dev
.
2015
;
1
:
14057
.
31.
Matsuda
T
,
Cepko
CL
.
Electroporation and RNA interference in the rodent retina in vivo and in vitro
.
Proc Natl Acad Sci U S A
.
2004
;
101
(
1
):
16
-
22
.
32.
Palmer
DJ
,
Turner
DL
,
Ng
P
.
Production of CRISPR/Cas9-mediated self-cleaving helper-dependent adenoviruses
.
Mol Ther Methods Clin Dev
.
2019
;
13
:
432
-
439
.
33.
Li
C
,
Psatha
N
,
Gil
S
,
Wang
H
,
Papayannopoulou
T
,
Lieber
A
.
HDAd5/35(++) adenovirus vector expressing anti-crispr peptides decreases crispr/cas9 toxicity in human hematopoietic stem cells
.
Mol Ther Methods Clin Dev
.
2018
;
9
:
390
-
401
.
34.
Nur
E
,
Biemond
BJ
,
Otten
H-M
,
Brandjes
DP
,
Schnog
J-JB
.
Group tCS. Oxidative stress in sickle cell disease; pathophysiology and potential implications for disease management
.
Am J Hematol.
2011
;
86
(
6
):
484
-
489
.
35.
Wang
H
,
Georgakopoulou
A
,
Zhang
W
, et al
.
HDAd6/35++ - a new helper-dependent adenovirus vector platform for in vivo transduction of hematopoietic stem cells
.
Mol Ther Methods Clin Dev
.
2023
;
29
:
213
-
226
.
36.
Li
C
,
Wang
H
,
Gil
S
, et al
.
Safe and efficient in vivo hematopoietic stem cell transduction in nonhuman primates using HDAd5/35++ vectors
.
Mol Ther Methods Clin Dev
.
2022
;
24
:
127
-
141
.
37.
Fitzhugh
CD
,
Cordes
S
,
Taylor
T
, et al
.
At least 20% donor myeloid chimerism is necessary to reverse the sickle phenotype after allogeneic HSCT
.
Blood
.
2017
;
130
(
17
):
1946
-
1948
.
38.
Tsai
SQ
,
Nguyen
NT
,
Malagon-Lopez
J
,
Topkar
VV
,
Aryee
MJ
,
Joung
JK
.
CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets
.
Nat Methods
.
2017
;
14
(
6
):
607
-
614
.
39.
Walters
MC
,
Patience
M
,
Leisenring
W
, et al
.
Stable mixed hematopoietic chimerism after bone marrow transplantation for sickle cell anemia
.
Biol Blood Marrow Transplant
.
2001
;
7
(
12
):
665
-
673
.
40.
Lattanzi
A
,
Camarena
J
,
Lahiri
P
, et al
.
Development of beta-globin gene correction in human hematopoietic stem cells as a potential durable treatment for sickle cell disease
.
Sci Transl Med
.
2021
;
13
(
598
):
eabf2444
.
41.
Hoban
MD
,
Cost
GJ
,
Mendel
MC
, et al
.
Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells
.
Blood
.
2015
;
125
(
17
):
2597
-
2604
.
42.
Dever
DP
,
Bak
RO
,
Reinisch
A
, et al
.
CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells
.
Nature
.
2016
;
539
(
7629
):
384
-
389
.
43.
Wilkinson
AC
,
Dever
DP
,
Baik
R
, et al
.
Cas9-AAV6 gene correction of beta-globin in autologous HSCs improves sickle cell disease erythropoiesis in mice
.
Nat Commun
.
2021
;
12
(
1
):
686
.
44.
Genovese
P
,
Schiroli
G
,
Escobar
G
, et al
.
Targeted genome editing in human repopulating haematopoietic stem cells
.
Nature
.
2014
;
510
(
7504
):
235
-
240
.
45.
Leibowitz
ML
,
Papathanasiou
S
,
Doerfler
PA
, et al
.
Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing
.
Nat Genet
.
2021
;
53
(
6
):
895
-
905
.
46.
Wang
H
,
Li
C
,
Obadan
AO
, et al
.
In vivo hematopoietic stem cell gene therapy for SARS-CoV2 infection using a decoy receptor
.
Hum Gene Ther
.
2022
;
33
(
7-8
):
389
-
403
.
47.
Fitzhugh
CD
,
Hsieh
MM
,
Bolan
CD
,
Saenz
C
,
Tisdale
JF
.
Granulocyte colony-stimulating factor (G-CSF) administration in individuals with sickle cell disease: time for a moratorium?
.
Cytotherapy
.
2009
;
11
(
4
):
464
-
471
.
48.
Li
C
,
Goncalves
KA
,
Rasko
T
, et al
.
Single-dose MGTA-145/plerixafor leads to efficient mobilization and in vivo transduction of HSCs with thalassemia correction in mice
.
Blood Adv
.
2021
;
5
(
5
):
1239
-
1249
.
49.
Palis
J
.
Ontogeny of erythropoiesis
.
Curr Opin Hematol
.
2008
;
15
(
3
):
155
-
161
.
50.
Ni
S
,
Bernt
K
,
Gaggar
A
,
Li
ZY
,
Kiem
HP
,
Lieber
A
.
Evaluation of biodistribution and safety of adenovirus vectors containing group B fibers after intravenous injection into baboons
.
Hum Gene Ther
.
2005
;
16
(
6
):
664
-
677
.
51.
Ong
HT
,
Timm
MM
,
Greipp
PR
, et al
.
Oncolytic measles virus targets high CD46 expression on multiple myeloma cells
.
Exp Hematol
.
2006
;
34
(
6
):
713
-
720
.
52.
Pincez
T
,
Lee
SSK
,
Ilboudo
Y
, et al
.
Clonal hematopoiesis in sickle cell disease
.
Blood
.
2021
;
138
(
21
):
2148
-
2152
.
53.
Ghannam
JY
,
Xu
X
,
Maric
I
, et al
.
Baseline TP53 mutations in adults with SCD developing myeloid malignancy following hematopoietic cell transplantation
.
Blood
.
2020
;
135
(
14
):
1185
-
1188
.
54.
Jaiswal
S
,
Jamieson
CHM
,
Pang
WW
, et al
.
CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis
.
Cell
.
2009
;
138
(
2
):
271
-
285
.
55.
Notta
F
,
Doulatov
S
,
Laurenti
E
,
Poeppl
A
,
Jurisica
I
,
Dick
JE
.
Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment
.
Science
.
2011
;
333
(
6039
):
218
-
221
.
56.
Humbert
O
,
Laszlo
GS
,
Sichel
S
, et al
.
Engineering resistance to CD33-targeted immunotherapy in normal hematopoiesis by CRISPR/Cas9-deletion of CD33 exon 2
.
Leukemia
.
2019
;
33
(
3
):
762
-
808
.
57.
Chu
HS
,
Budak
E
,
Mondal
M
, et al
.
Engineered stem cell antibody paired evasion-2 (escape-2): paired hsc epitope engineering and direct editing of sickle allele for antibody-mediated autologous hematopoietic stem cell therapy conditioning for the treatment of sickle cell disease [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
10213
-
10214
.
58.
Banskota
S
,
Raguram
A
,
Suh
S
, et al
.
Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins
.
Cell
.
2022
;
185
(
2
):
250
-
265.e16
.
59.
Breda
L
,
Papp
TE
,
Triebwasser
M
, et al
.
In vivo modification of hematopoietic stem cells by targeted lipid nanoparticles encapsulating mRNA [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
305
-
306
.
60.
Banda
O
,
Alameh
M
,
Jung
S
,
Weissman
D
,
Rivella
S
,
Peter Kurre
P
.
Direct delivery of mrna-loaded lipid nanoparticles to the hematopoietic stem cell niche [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
4923
-
4924
.
You do not currently have access to this content.
Sign in via your Institution