• Aging HSCs display a progressive and growth-factor sensitive elongation of G1.

  • Increased growth factor concentrations are required to stimulate mitogenesis in aging HSCs associated with reduced AKT activation.

Human hematopoietic stem cells (HSCs), like their counterparts in mice, comprise a functionally and molecularly heterogeneous population of cells throughout life that collectively maintain required outputs of mature blood cells under homeostatic conditions. In both species, an early developmental change in the HSC population involves a postnatal switch from a state in which most of these cells exist in a rapidly cycling state and maintain a high self-renewal potential to a state in which the majority of cells are in a quiescent state with an overall reduced self-renewal potential. However, despite the well-established growth factor dependence of HSC proliferation, whether and how this mechanism of HSC regulation might be affected by aging has remained poorly understood. To address this knowledge gap, we isolated highly HSC-enriched CD34+CD38CD45RACD90+CD49f+ (CD49f+) cells from cord blood, adult bone marrow, and mobilized peripheral blood samples obtained from normal humans spanning 7 decades of age and then measured their functional and molecular responses to growth factor stimulation in vitro and their regenerative activity in vivo in mice that had undergone transplantation. Initial experiments revealed that advancing donor age was accompanied by a significant and progressively delayed proliferative response but not the altered mature cell outputs seen in normal older individuals. Importantly, subsequent dose-response analyses revealed an age-associated reduction in the growth factor–stimulated proliferation of CD49f+ cells mediated by reduced activation of AKT and altered cell cycle entry and progression. These findings identify a new intrinsic, pervasive, and progressive aging-related alteration in the biological and signaling mechanisms required to drive the proliferation of very primitive, normal human hematopoietic cells.

1.
Laurenti
E
,
Göttgens
B
.
From haematopoietic stem cells to complex differentiation landscapes
.
Nature
.
2018
;
553
(
7689
):
418
-
426
.
2.
Blanco
E
,
Pérez-Andrés
M
,
Arriba-Méndez
S
, et al
.
Age-associated distribution of normal B-cell and plasma cell subsets in peripheral blood
.
J Allergy Clin Immunol
.
2018
;
141
(
6
):
2208
-
2219.e16
.
3.
Comans-Bitter
WM
,
de Groot
R
,
van den Beemd
R
, et al
.
Immunophenotyping of blood lymphocytes in childhoodReference values for lymphocyte subpopulations
.
J Pediatr
.
1997
;
130
(
3
):
388
-
393
.
4.
Geiger
H
,
de Haan
G
,
Florian
MC
.
The ageing haematopoietic stem cell compartment
.
Nat Rev Immunol
.
2013
;
13
(
5
):
376
-
389
.
5.
Guralnik
JM
,
Eisenstaedt
RS
,
Ferrucci
L
,
Klein
HG
,
Woodman
RC
.
Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia
.
Blood
.
2004
;
104
(
8
):
2263
-
2268
.
6.
Jaiswal
S
,
Ebert
BL
.
Clonal hematopoiesis in human aging and disease
.
Science
.
2019
;
366
(
6465
):
eaan4673
.
7.
Morbach
H
,
Eichhorn
EM
,
Liese
JG
,
Girschick
HJ
.
Reference values for B cell subpopulations from infancy to adulthood: age-dependent reference values for B cell populations
.
Clin Exp Immunol
.
2010
;
162
(
2
):
271
-
279
.
8.
Ogawa
T
,
Kitagawa
M
,
Hirokawa
K
.
Age-related changes of human bone marrow: a histometric estimation of proliferative cells, apoptotic cells, T cells, B cells and macrophages
.
Mech Ageing Dev
.
2000
;
117
(
1-3
):
57
-
68
.
9.
Chin
DWL
,
Yoshizato
T
,
Virding Culleton
S
, et al
.
Aged healthy mice acquire clonal hematopoiesis mutations
.
Blood
.
2022
;
139
(
4
):
629
-
634
.
10.
Mitchell
E
,
Spencer Chapman
M
,
Williams
N
, et al
.
Clonal dynamics of haematopoiesis across the human lifespan
.
Nature
.
2022
;
606
(
7913
):
343
-
350
.
11.
Benz
C
,
Copley
MR
,
Kent
DG
, et al
.
Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs
.
Cell Stem Cell
.
2012
;
10
(
3
):
273
-
283
.
12.
Cho
RH
,
Sieburg
HB
,
Muller-Sieburg
CE
.
A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells
.
Blood
.
2008
;
111
(
12
):
5553
-
5561
.
13.
Dykstra
B
,
Olthof
S
,
Schreuder
J
,
Ritsema
M
,
de Haan
G
.
Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells
.
J Exp Med
.
2011
;
208
(
13
):
2691
-
2703
.
14.
Dykstra
B
,
Kent
D
,
Bowie
M
, et al
.
Long-term propagation of distinct hematopoietic differentiation programs in vivo
.
Cell Stem Cell
.
2007
;
1
(
2
):
218
-
229
.
15.
Sanjuan-Pla
A
,
Macaulay
IC
,
Jensen
CT
, et al
.
Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy
.
Nature
.
2013
;
502
(
7470
):
232
-
236
.
16.
Yamamoto
R
,
Morita
Y
,
Ooehara
J
, et al
.
Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells
.
Cell
.
2013
;
154
(
5
):
1112
-
1126
.
17.
Amoah
A
,
Keller
A
,
Emini
R
, et al
.
Aging of human hematopoietic stem cells is linked to changes in Cdc42 activity
.
Haematologica
.
2022
;
107
(
2
):
393
-
402
.
18.
Kuranda
K
,
Vargaftig
J
,
de la Rochere
P
, et al
.
Age-related changes in human hematopoietic stem/progenitor cells: aging of human HSC
.
Aging Cell
.
2011
;
10
(
3
):
542
-
546
.
19.
Nilsson
AR
,
Soneji
S
,
Adolfsson
S
,
Bryder
D
,
Pronk
CJ
.
Human and murine hematopoietic stem cell aging is associated with functional impairments and intrinsic megakaryocytic/erythroid bias
.
PLoS One
.
2016
;
11
(
7
):
e0158369
.
20.
Pang
WW
,
Price
EA
,
Sahoo
D
, et al
.
Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age
.
Proc Natl Acad Sci U S A
.
2011
;
108
(
50
):
20012
-
20017
.
21.
Belluschi
S
,
Calderbank
EF
,
Ciaurro
V
, et al
.
Myelo-lymphoid lineage restriction occurs in the human haematopoietic stem cell compartment before lymphoid-primed multipotent progenitors
.
Nat Commun
.
2018
;
9
(
1
):
4100
.
22.
Huntsman
HD
,
Bat
T
,
Cheng
H
, et al
.
Human hematopoietic stem cells from mobilized peripheral blood can be purified based on CD49f integrin expression
.
Blood
.
2015
;
126
(
13
):
1631
-
1633
.
23.
Knapp
DJHF
,
Hammond
CA
,
Hui
T
, et al
.
Single-cell analysis identifies a CD33 + subset of human cord blood cells with high regenerative potential
.
Nat Cell Biol
.
2018
;
20
(
6
):
710
-
720
.
24.
Knapp
DJHF
,
Hammond
CA
,
Miller
PH
, et al
.
Dissociation of survival, proliferation, and state control in human hematopoietic stem cells
.
Stem Cell Reports
.
2017
;
8
(
1
):
152
-
162
.
25.
Notta
F
,
Doulatov
S
,
Laurenti
E
,
Poeppl
A
,
Jurisica
I
,
Dick
JE
.
Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment
.
Science
.
2011
;
333
(
6039
):
218
-
221
.
26.
Wang
K
,
Guzman
AK
,
Yan
Z
, et al
.
Ultra-high-frequency reprogramming of individual long-term hematopoietic stem cells yields low somatic variant induced pluripotent stem cells
.
Cell Rep
.
2019
;
26
(
10
):
2580
-
2592.e7
.
27.
Bowie
MB
,
Kent
DG
,
Dykstra
B
, et al
.
Identification of a new intrinsically timed developmental checkpoint that reprograms key hematopoietic stem cell properties
.
Proc Natl Acad Sci U S A
.
2007
;
104
(
14
):
5878
-
5882
.
28.
Foudi
A
,
Hochedlinger
K
,
Van Buren
D
, et al
.
Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells
.
Nat Biotechnol
.
2009
;
27
(
1
):
84
-
90
.
29.
Morcos
MNF
,
Zerjatke
T
,
Glauche
I
, et al
.
Continuous mitotic activity of primitive hematopoietic stem cells in adult mice
.
J Exp Med
.
2020
;
217
(
6
):
e20191284
.
30.
Sawai
CM
,
Babovic
S
,
Upadhaya
S
, et al
.
Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals
.
Immunity
.
2016
;
45
(
3
):
597
-
609
.
31.
Wilson
A
,
Laurenti
E
,
Oser
G
, et al
.
Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair
.
Cell
.
2008
;
135
(
6
):
1118
-
1129
.
32.
Baerlocher
GM
,
Rice
K
,
Vulto
I
,
Lansdorp
PM
.
Longitudinal data on telomere length in leukocytes from newborn baboons support a marked drop in stem cell turnover around 1 year of age
.
Aging Cell
.
2007
;
6
(
1
):
121
-
123
.
33.
Sidorov
I
,
Kimura
M
,
Yashin
A
,
Aviv
A
.
Leukocyte telomere dynamics and human hematopoietic stem cell kinetics during somatic growth
.
Exp Hematol
.
2009
;
37
(
4
):
514
-
524
.
34.
Dykstra
B
,
Ramunas
J
,
Kent
D
, et al
.
High-resolution video monitoring of hematopoietic stem cells cultured in single-cell arrays identifies new features of self-renewal
.
Proc Natl Acad Sci U S A
.
2006
;
103
(
21
):
8185
-
8190
.
35.
Flach
J
,
Bakker
ST
,
Mohrin
M
, et al
.
Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells
.
Nature
.
2014
;
512
(
7513
):
198
-
202
.
36.
Hui
T
,
Cao
Q
,
Wegrzyn-Woltosz
J
, et al
.
High-resolution single-cell DNA methylation measurements reveal epigenetically distinct hematopoietic stem cell subpopulations
.
Stem Cell Reports
.
2018
;
11
(
2
):
578
-
592
.
37.
Knapp
DJHF
,
Hammond
CA
,
Wang
F
, et al
.
A topological view of human CD34+ cell state trajectories from integrated single-cell output and proteomic data
.
Blood
.
2019
;
133
(
9
):
927
-
939
.
38.
Knapp
DJHF
,
Hammond
CA
,
Aghaeepour
N
, et al
.
Distinct signaling programs control human hematopoietic stem cell survival and proliferation
.
Blood
.
2017
;
129
(
3
):
307
-
318
.
39.
Notta
F
,
Zandi
S
,
Takayama
N
, et al
.
Distinct routes of lineage development reshape the human blood hierarchy across ontogeny
.
Science
.
2016
;
351
(
6269
):
aab2116
.
40.
Velten
L
,
Haas
SF
,
Raffel
S
, et al
.
Human haematopoietic stem cell lineage commitment is a continuous process
.
Nat Cell Biol
.
2017
;
19
(
4
):
271
-
281
.
41.
Miller
PH
,
Rabu
G
,
MacAldaz
M
, et al
.
Analysis of parameters that affect human hematopoietic cell outputs in mutant c-kit-immunodeficient mice
.
Exp Hematol
.
2017
;
48
:
41
-
49
.
42.
Loeffler
D
,
Wang
W
,
Hopf
A
, et al
.
Mouse and human HSPC immobilization in liquid culture by CD43- or CD44-antibody coating
.
Blood
.
2018
;
131
(
13
):
1425
-
1429
.
43.
Lin
JR
,
Fallahi-Sichani
M
,
Sorger
PK
.
Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method
.
Nat Commun
.
2015
;
6
(
1
):
8390
.
44.
Bowie
MB
,
McKnight
KD
,
Kent
DG
,
McCaffrey
L
,
Hoodless
PA
,
Eaves
CJ
.
Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect
.
J Clin Invest
.
2006
;
116
(
10
):
2808
-
2816
.
45.
Copley
MR
,
Babovic
S
,
Benz
C
, et al
.
The Lin28b–let-7–Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells
.
Nat Cell Biol
.
2013
;
15
(
8
):
916
-
925
.
46.
Becht
E
,
McInnes
L
,
Healy
J
, et al
.
Dimensionality reduction for visualizing single-cell data using UMAP
.
Nat Biotechnol
.
2018
;
37
(
1
):
38
-
44
.
47.
McInnes
L
,
Healy
J
,
Saul
N
,
Großberger
L
.
UMAP: Uniform Manifold Approximation and Projection
.
JOSS
.
2018
;
3
(
29
):
861
.
48.
Laurenti
E
,
Frelin
C
,
Xie
S
, et al
.
CDK6 levels regulate quiescence exit in human hematopoietic stem cells
.
Cell Stem Cell
.
2015
;
16
(
3
):
302
-
313
.
49.
Wilpshaar
J
,
Falkenburg
JHF
,
Tong
X
, et al
.
Similar repopulating capacity of mitotically active and resting umbilical cord blood CD34+ cells in NOD/SCID mice
.
Blood
.
2000
;
96
(
6
):
2100
-
2107
.
50.
Hume
S
,
Dianov
GL
,
Ramadan
K
.
A unified model for the G1/S cell cycle transition
.
Nucleic Acids Res
.
2020
;
48
(
22
):
12483
-
12501
.
51.
Sherr
CJ
.
The Pezcoller lecture: cancer cell cycles revisited
.
Cancer Res
.
2000
;
60
(
14
):
3689
-
3695
.
52.
Sherr
CJ
.
Mammalian G1 cyclins
.
Cell
.
1993
;
73
(
6
):
1059
-
1065
.
53.
Grover
A
,
Sanjuan-Pla
A
,
Thongjuea
S
, et al
.
Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells
.
Nat Commun
.
2016
;
7
(
1
):
11075
.
54.
Carrelha
J
,
Meng
Y
,
Kettyle
LM
, et al
.
Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells
.
Nature
.
2018
;
554
(
7690
):
106
-
111
.
55.
Ergen
AV
,
Boles
NC
,
Goodell
MA
.
Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing
.
Blood
.
2012
;
119
(
11
):
2500
-
2509
.
56.
Young
K
,
Eudy
E
,
Bell
R
, et al
.
Decline in IGF1 in the bone marrow microenvironment initiates hematopoietic stem cell aging
.
Cell Stem Cell
.
2021
;
28
(
8
):
1473
-
1482.e7
.
57.
García-Gutiérrez
L
,
Delgado
MD
,
León
J
.
MYC oncogene contributions to release of cell cycle brakes
.
Genes (Basel)
.
2019
;
10
(
3
):
244
.
58.
Wang
W
,
Zhang
Y
,
Dettinger
P
, et al
.
Cytokine combinations for human blood stem cell expansion induce cell-type– and cytokine-specific signaling dynamics
.
Blood
.
2021
;
138
(
10
):
847
-
857
.
59.
García-Prat
L
,
Kaufmann
KB
,
Schneiter
F
, et al
.
TFEB-mediated endolysosomal activity controls human hematopoietic stem cell fate
.
Cell Stem Cell
.
2021
;
28
(
10
):
1838
-
1850.e10
.
60.
Loeffler
D
,
Wehling
A
,
Schneiter
F
, et al
.
Asymmetric lysosome inheritance predicts activation of haematopoietic stem cells
.
Nature
.
2019
;
573
(
7774
):
426
-
429
.
You do not currently have access to this content.
Sign in via your Institution