• NRX-0492 induced rapid and sustained degradation of wild-type and C481 mutant BTK at subnanomolar concentrations in primary CLL samples.

  • Orally administered NRX-0492 abrogated BTK-dependent signaling and demonstrated anti-CLL activity in patient-derived xenografts in vivo.

Bruton tyrosine kinase (BTK) is essential for B-cell receptor (BCR) signaling, a driver of chronic lymphocytic leukemia (CLL). Covalent inhibitors bind C481 in the active site of BTK and have become a preferred CLL therapy. Disease progression on covalent BTK inhibitors is commonly associated with C481 mutations. Here, we investigated a targeted protein degrader, NRX-0492, that links a noncovalent BTK-binding domain to cereblon, an adaptor protein of the E3 ubiquitin ligase complex. NRX-0492 selectively catalyzes ubiquitylation and proteasomal degradation of BTK. In primary CLL cells, NRX-0492 induced rapid and sustained degradation of both wild-type and C481 mutant BTK at half maximal degradation concentration (DC50) of ≤0.2 nM and DC90 of ≤0.5 nM, respectively. Sustained degrader activity was maintained for at least 24 hours after washout and was equally observed in high-risk (deletion 17p) and standard-risk (deletion 13q only) CLL subtypes. In in vitro testing against treatment-naïve CLL samples, NRX-0492 was as effective as ibrutinib at inhibiting BCR-mediated signaling, transcriptional programs, and chemokine secretion. In patient-derived xenografts, orally administered NRX-0492 induced BTK degradation and inhibited activation and proliferation of CLL cells in blood and spleen and remained efficacious against primary C481S mutant CLL cells collected from a patient progressing on ibrutinib. Oral bioavailability, >90% degradation of BTK at subnanomolar concentrations, and sustained pharmacodynamic effects after drug clearance make this class of targeted protein degraders uniquely suitable for clinical translation, in particular as a strategy to overcome BTK inhibitor resistance. Clinical studies testing this approach have been initiated (NCT04830137, NCT05131022).

1.
Burger
JA
.
Treatment of chronic lymphocytic leukemia
.
N Engl J Med
.
2020
;
383
(
5
):
460
-
473
.
2.
Herishanu
Y
,
Perez-Galan
P
,
Liu
D
, et al
.
The lymph node microenvironment promotes B-cell receptor signaling, NF-κB activation, and tumor proliferation in chronic lymphocytic leukemia
.
Blood
.
2011
;
117
(
2
):
563
-
574
.
3.
Wiestner
A
.
The role of B-cell receptor inhibitors in the treatment of patients with chronic lymphocytic leukemia
.
Haematologica
.
2015
;
100
(
12
):
1495
-
1507
.
4.
Stevenson
FK
,
Krysov
S
,
Davies
AJ
,
Steele
AJ
,
Packham
G
.
B-cell receptor signaling in chronic lymphocytic leukemia
.
Blood
.
2011
;
118
(
16
):
4313
-
4320
.
5.
Treon
SP
,
Tripsas
CK
,
Meid
K
, et al
.
IBR in previously treated Waldenstrom's macroglobulinemia
.
N Engl J Med
.
2015
;
372
(
15
):
1430
-
1440
.
6.
Noy
A
,
de Vos
S
,
Coleman
M
, et al
.
Durable IBR responses in relapsed/refractory marginal zone lymphoma: long-term follow-up and biomarker analysis
.
Blood Adv
.
2020
;
4
(
22
):
5773
-
5784
.
7.
Rule
S
,
Dreyling
M
,
Goy
A
, et al
.
Outcomes in 370 patients with mantle cell lymphoma treated with IBR: a pooled analysis from three open-label studies
.
Br J Haematol
.
2017
;
179
(
3
):
430
-
438
.
8.
Wilson
WH
,
Wright
GW
,
Huang
DW
, et al
.
Effect of IBR with R-CHOP chemotherapy in genetic subtypes of DLBCL
.
Cancer Cell
.
2021
;
39
(
12
):
1643
-
1653
.
9.
Trotman
J
,
Opat
S
,
Gottlieb
D
, et al
.
Zanubrutinib for the treatment of patients with Waldenstrom macroglobulinemia: 3 years of follow-up
.
Blood
.
2020
;
136
(
18
):
2027
-
2037
.
10.
Sharman
JP
,
Egyed
M
,
Jurczak
W
, et al
.
Acalabrutinib with or without obinutuzumab versus chlorambucil and obinutuzmab for treatment-naive chronic lymphocytic leukaemia (ELEVATE TN): a randomised, controlled, phase 3 trial
.
Lancet
.
2020
;
395
(
10232
):
1278
-
1291
.
11.
Burger
JA
,
Buggy
JJ
.
Bruton tyrosine kinase inhibitor IBR (PCI-32765)
.
Leuk Lymphoma
.
2013
;
54
(
11
):
2385
-
2391
.
12.
Herman
SE
,
Mustafa
RZ
,
Gyamfi
JA
, et al
.
IBR inhibits BCR and NF-κB signaling and reduces tumor proliferation in tissue-resident cells of patients with CLL
.
Blood
.
2014
;
123
(
21
):
3286
-
3295
.
13.
Landau
DA
,
Sun
C
,
Rosebrock
D
, et al
.
The evolutionary landscape of chronic lymphocytic leukemia treated with IBR targeted therapy
.
Nat Commun
.
2017
;
8
(
1
):
2185
.
14.
Sun
C
,
Nierman
P
,
Kendall
EK
, et al
.
Clinical and biological implications of target occupancy in CLL treated with the BTK inhibitor acalabrutinib
.
Blood
.
2020
;
136
(
1
):
93
-
105
.
15.
Ahn
IE
,
Farooqui
MZH
,
Tian
X
, et al
.
Depth and durability of response to IBR in CLL: 5-year follow-up of a phase 2 study
.
Blood
.
2018
;
131
(
21
):
2357
-
2366
.
16.
Burger
JA
,
Tedeschi
A
,
Barr
PM
, et al
.
IBR as initial therapy for patients with chronic lymphocytic leukemia
.
N Engl J Med
.
2015
;
373
(
25
):
2425
-
2437
.
17.
Byrd
JC
,
Brown
JR
,
O'Brien
S
, et al
.
IBR versus ofatumumab in previously treated chronic lymphoid leukemia
.
N Engl J Med
.
2014
;
371
(
3
):
213
-
223
.
18.
O'Brien
S
,
Jones
JA
,
Coutre
SE
, et al
.
IBR for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17): a phase 2, open-label, multicentre study
.
Lancet Oncol
.
2016
;
17
(
10
):
1409
-
1418
.
19.
Shanafelt
TD
,
Wang
XV
,
Kay
NE
, et al
.
IBR-rituximab or chemoimmunotherapy for chronic lymphocytic leukemia
.
N Engl J Med
.
2019
;
381
(
5
):
432
-
443
.
20.
Woyach
JA
,
Ruppert
AS
,
Heerema
NA
, et al
.
IBR regimens versus chemoimmunotherapy in older patients with untreated CLL
.
N Engl J Med
.
2018
;
379
(
26
):
2517
-
2528
.
21.
Burger
JA
,
Barr
PM
,
Robak
T
, et al
.
Long-term efficacy and safety of first-line IBR treatment for patients with CLL/SLL: 5 years of follow-up from the phase 3 RESONATE-2 study
.
Leukemia
.
2020
;
34
(
3
):
787
-
798
.
22.
Ahn
IE
,
Tian
X
,
Wiestner
A
.
IBR for chronic lymphocytic leukemia with TP53 alterations
.
N Engl J Med
.
2020
;
383
(
5
):
498
-
500
.
23.
Ahn
IE
,
Underbayev
C
,
Albitar
A
, et al
.
Clonal evolution leading to IBR resistance in chronic lymphocytic leukemia
.
Blood
.
2017
;
129
(
11
):
1469
-
1479
.
24.
Woyach
JA
,
Ruppert
AS
,
Guinn
D
, et al
.
BTK(C481S)-mediated resistance to IBR in chronic lymphocytic leukemia
.
J Clin Oncol
.
2017
;
35
(
13
):
1437
-
1443
.
25.
Kadri
S
,
Lee
J
,
Fitzpatrick
C
, et al
.
Clonal evolution underlying leukemia progression and Richter transformation in patients with IBR-relapsed CLL
.
Blood Adv
.
2017
;
1
(
12
):
715
-
727
.
26.
Liu
TM
,
Woyach
JA
,
Zhong
Y
, et al
.
Hypermorphic mutation of phospholipase C, gamma2 acquired in IBR-resistant CLL confers BTK independency upon B-cell receptor activation
.
Blood
.
2015
;
126
(
1
):
61
-
68
.
27.
Woyach
JA
,
Furman
RR
,
Liu
TM
, et al
.
Resistance mechanisms for the Bruton's tyrosine kinase inhibitor IBR
.
N Engl J Med
.
2014
;
370
(
24
):
2286
-
2294
.
28.
Allan
JN
,
Pinilla-Ibarz
J
,
Gladstone
DE
, et al
.
Phase 1b dose-escalation study of the selective, noncovalent, reversible Bruton’s tyrosine kinase inhibitor vecabrutinib in B-cell malignancies
.
Haematologica
.
2021
;
107
(
4
):
984
-
987
.
29.
Mato
AR
,
Shah
NN
,
Jurczak
W
, et al
.
Pirtobrutinib in relapsed or refractory B-cell malignancies (BRUIN): a phase 1/2 study
.
Lancet
.
2021
;
397
(
10277
):
892
-
901
.
30.
Woyach
JA
,
Flinn
IW
,
Awan
FT
, et al
.
Preliminary efficacy and safety of MK-1026, a non-covalent inhibitor of wild-type and C481S mutated Bruton tyrosine kinase, in B-cell malignancies: A phase 2 dose expansion study
.
Blood
.
2021
;
138
(
Supplement 1
):
392
.
31.
Wang
E
,
Mi
X
,
Thompson
MC
, et al
.
Mechanisms of resistance to noncovalent Bruton's tyrosine kinase inhibitors
.
N Engl J Med
.
2022
;
386
(
8
):
735
-
743
.
32.
Arthur
R
,
Valle-Argos
B
,
Steele
AJ
,
Packham
G
.
Development of PROTACs to address clinical limitations associated with BTK-targeted kinase inhibitors
.
Explor Target Antitumor Ther
.
2020
;
1
:
131
-
152
.
33.
Bondeson
DP
,
Mares
A
,
Smith
IE
, et al
.
Catalytic in vivo protein knockdown by small-molecule PROTACs
.
Nat Chem Biol
.
2015
;
11
(
8
):
611
-
617
.
34.
Kelly
A
,
Robbins
DW
,
Tan
M
, et al
.
Targeted protein degradation of BTK as a unique therapeutic approach for B cell malignancies
.
Blood
.
2019
;
134
(
Supplement_1
):
3805
.
35.
Robbins
D
,
Noviski
M
,
Tan
M
, et al
.
POS0006 NX-5948, A selective degrader of BTK, significantly reduces inflammation in a model of autoimmune disease
.
Ann Rheum Dis
.
2021
;
80
(
Suppl 1
):
204
-
205
.
36.
Robbins
DW
,
Kelly
A
,
Tan
M
, et al
.
Nx-2127, a degrader of BTK and IMiD neosubstrates, for the treatment of B-cell malignancies
.
Blood
.
2020
;
136
(
Supplement 1
):
34
.
37.
Tohda
S
,
Sato
T
,
Kogoshi
H
,
Fu
L
,
Sakano
S
,
Nara
N
.
Establishment of a novel B-cell lymphoma cell line with suppressed growth by gamma-secretase inhibitors
.
Leuk Res
.
2006
;
30
(
11
):
1385
-
1390
.
38.
Herman
SE
,
Sun
X
,
McAuley
EM
, et al
.
Modeling tumor-host interactions of chronic lymphocytic leukemia in xenografted mice to study tumor biology and evaluate targeted therapy
.
Leukemia
.
2013
;
27
(
12
):
2311
-
2321
.
39.
Gandhi
AK
,
Kang
J
,
Havens
CG
, et al
.
Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN)
.
Br J Haematol
.
2014
;
164
(
6
):
811
-
821
.
40.
Ishoey
M
,
Chorn
S
,
Singh
N
, et al
.
Translation termination factor GSPT1 is a phenotypically relevant off-target of heterobifunctional phthalimide degraders
.
ACS Chem Biol
.
2018
;
13
(
3
):
553
-
560
.
41.
Ito
T
,
Handa
H
.
Cereblon and its downstream substrates as molecular targets of immunomodulatory drugs
.
Int J Hematol
.
2016
;
104
(
3
):
293
-
299
.
42.
Lu
G
,
Middleton
RE
,
Sun
H
, et al
.
The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins
.
Science
.
2014
;
343
(
6168
):
305
-
309
.
43.
Matyskiela
ME
,
Lu
G
,
Ito
T
, et al
.
A novel cereblon modulator recruits GSPT1 to the CRL4(CRBN) ubiquitin ligase
.
Nature
.
2016
;
535
(
7611
):
252
-
257
.
44.
Schmiedel
BJ
,
Singh
D
,
Madrigal
A
, et al
.
Impact of genetic polymorphisms on human immune cell gene expression
.
Cell
.
2018
;
175
(
6
):
1701
-
1715.e1716
.
45.
Guo
A
,
Lu
P
,
Galanina
N
, et al
.
Heightened BTK-dependent cell proliferation in unmutated chronic lymphocytic leukemia confers increased sensitivity to IBR
.
Oncotarget
.
2016
;
7
(
4
):
4598
-
4610
.
46.
Herman
SE
,
Gordon
AL
,
Hertlein
E
, et al
.
Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765
.
Blood
.
2011
;
117
(
23
):
6287
-
6296
.
47.
Burger
JA
,
Quiroga
MP
,
Hartmann
E
, et al
.
High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation
.
Blood
.
2009
;
113
(
13
):
3050
-
3058
.
48.
Bagnara
D
,
Kaufman
MS
,
Calissano
C
, et al
.
A novel adoptive transfer model of chronic lymphocytic leukemia suggests a key role for T lymphocytes in the disease
.
Blood
.
2011
;
117
(
20
):
5463
-
5472
.
49.
Patten
PE
,
Ferrer
G
,
Chen
SS
, et al
.
Chronic lymphocytic leukemia cells diversify and differentiate in vivo via a nonclassical Th1-dependent, Bcl-6-deficient process
.
JCI Insight
.
2016
;
1
(
4
):
e86288
.
50.
Patten
PEM
,
Ferrer
G
,
Chen
SS
, et al
.
A detailed analysis of parameters supporting the engraftment and growth of chronic lymphocytic leukemia cells in immune-deficient mice
.
Front Immunol
.
2021
;
12
:
627020
.
51.
Herman
SEM
,
Montraveta
A
,
Niemann
CU
, et al
.
The Bruton tyrosine kinase (BTK) inhibitor acalabrutinib demonstrates potent on-target effects and efficacy in two mouse models of chronic lymphocytic leukemia
.
Clin Cancer Res
.
2017
;
23
(
11
):
2831
-
2841
.
52.
Huang
HT
,
Dobrovolsky
D
,
Paulk
J
, et al
.
A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader
.
Cell Chem Biol
.
2018
;
25
(
1
):
88
-
99.e86
.
53.
Dobrovolsky
D
,
Wang
ES
,
Morrow
S
, et al
.
Bruton tyrosine kinase degradation as a therapeutic strategy for cancer
.
Blood
.
2019
;
133
(
9
):
952
-
961
.
54.
Mullard
A
.
Targeted protein degraders crowd into the clinic
.
Nat Rev Drug Discov
.
2021
;
20
(
4
):
247
-
250
.
55.
Sivina
M
,
Hartmann
E
,
Kipps
TJ
, et al
.
CCL3 (MIP-1alpha) plasma levels and the risk for disease progression in chronic lymphocytic leukemia
.
Blood
.
2011
;
117
(
5
):
1662
-
1669
.
56.
Sivina
M
,
Kreitman
RJ
,
Arons
E
,
Ravandi
F
,
Burger
JA
.
The Bruton tyrosine kinase inhibitor IBR (PCI-32765) blocks hairy cell leukaemia survival, proliferation and B cell receptor signalling: a new therapeutic approach
.
Br J Haematol
.
2014
;
166
(
2
):
177
-
188
.
You do not currently have access to this content.
Sign in via your Institution