• OTUD1 is a novel deubiquitinase of Notch2-ICD and promotes the severity of T cell–mediated aGVHD.

  • The OTUD1/Notch2-ICD axis is a potential therapeutic target for alleviating aGVHD.

Disorders of the ubiquitin-proteasome system (UPS) are known to influence the incidence and mortality of various diseases. It remains largely unknown whether and how the UPS affects the onset and progression of acute graft-verus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). This study demonstrated that the deubiquitinase OTUD1 is an essential regulator of aGVHD. Activation of CD4+ T cells after allo-HSCT, elevated the protein levels of OTUD1, which in turn interacted with the Notch2-ICD (NICD) to cleave the ubiquitin of NICD at the K1770 site, thereby inducing NICD protein accumulations in T cells. OTUD1-driven NICD signaling promoted the differentiation and functions of Th1 and Th17 cells and amplified the cascade of aGVHD. Moreover, by screening a FDA-approved drugs library the study identified dapagliflozin as an inhibitor targeting the OTUD1/NICD axis. Dapagliflozin administration significantly prolonged the survival of aGVHD mice. This study characterized a previously unknown role of OTUD1 in T cell–mediated allogeneic responses and provided a promising therapeutic strategy to target OTUD1 for the alleviation of aGVHD.

1.
Blazar
BR
,
Hill
GR
,
Murphy
WJ
.
Dissecting the biology of allogeneic HSCT to enhance the GvT effect whilst minimizing GvHD
.
Nat Rev Clin Oncol
.
2020
;
17
(
8
):
475
-
492
.
2.
Zeiser
R
,
Teshima
T
.
Nonclassical manifestations of acute GVHD
.
Blood
.
2021
;
138
(
22
):
2165
-
2172
.
3.
Voermans
C
,
Hazenberg
MD
.
Cellular therapies for graft-versus-host disease: a tale of tissue repair and tolerance
.
Blood
.
2020
;
136
(
4
):
410
-
417
.
4.
Zeiser
R
.
Advances in understanding the pathogenesis of graft-versus-host disease
.
Br J Haematol
.
2019
;
187
(
5
):
563
-
572
.
5.
Zeiser
R
,
Blazar
BR
.
Acute graft-versus-host disease - biologic process, prevention, and therapy
.
N Engl J Med
.
2017
;
377
(
22
):
2167
-
2179
.
6.
Harrigan
JA
,
Jacq
X
,
Martin
NM
,
Jackson
SP
.
Deubiquitylating enzymes and drug discovery: emerging opportunities
.
Nat Rev Drug Discov
.
2018
;
17
(
1
):
57
-
78
.
7.
Clague
MJ
,
Urbe
S
,
Komander
D
.
Breaking the chains: deubiquitylating enzyme specificity begets function
.
Nat Rev Mol Cell Biol
.
2019
;
20
(
6
):
338
-
352
.
8.
Zhang
L
,
Liu
J
,
Qian
L
, et al
.
Induction of OTUD1 by RNA viruses potently inhibits innate immune responses by promoting degradation of the MAVS/TRAF3/TRAF6 signalosome
.
PLoS Pathog
.
2018
;
14
(
5
):
e1007067
.
9.
Chen
X
,
Zhang
H
,
Wang
X
, et al
.
OTUD1 regulates antifungal innate immunity through deubiquitination of CARD9
.
J Immunol
.
2021
;
206
(
8
):
1832
-
1843
.
10.
Zhang
Z
,
Fan
Y
,
Xie
F
, et al
.
Breast cancer metastasis suppressor OTUD1 deubiquitinates SMAD7
.
Nat Commun
.
2017
;
8
(
1
):
2116
.
11.
Luo
Q
,
Wu
X
,
Zhao
P
, et al
.
OTUD1 activates caspase-independent and caspase-dependent apoptosis by promoting AIF nuclear translocation and MCL1 degradation
.
Adv Sci (Weinh)
.
2021
;
8
(
8
):
2002874
.
12.
Radtke
F
,
Wilson
A
,
Mancini
SJ
,
MacDonald
HR
.
Notch regulation of lymphocyte development and function
.
Nat Immunol
.
2004
;
5
(
3
):
247
-
253
.
13.
Chen
ELY
,
Thompson
PK
,
Zuniga-Pflucker
JC
.
RBPJ-dependent Notch signaling initiates the T cell program in a subset of thymus-seeding progenitors
.
Nat Immunol
.
2019
;
20
(
11
):
1456
-
1468
.
14.
Zhang
Y
,
Sandy
AR
,
Wang
J
, et al
.
Notch signaling is a critical regulator of allogeneic CD4+ T-cell responses mediating graft-versus-host disease
.
Blood
.
2011
;
117
(
1
):
299
-
308
.
15.
Tran
IT
,
Sandy
AR
,
Carulli
AJ
, et al
.
Blockade of individual Notch ligands and receptors controls graft-versus-host disease
.
J Clin Invest
.
2013
;
123
(
4
):
1590
-
1604
.
16.
Radojcic
V
,
Paz
K
,
Chung
J
, et al
.
Notch signaling mediated by Delta-like ligands 1 and 4 controls the pathogenesis of chronic GVHD in mice
.
Blood
.
2018
;
132
(
20
):
2188
-
2200
.
17.
Fukushima
H
,
Shimizu
K
,
Watahiki
A
, et al
.
NOTCH2 Hajdu-Cheney mutations escape SCF(FBW7)-dependent proteolysis to promote osteoporosis
.
Mol Cell
.
2017
;
68
(
4
):
645
-
658.e645
.
18.
Ding
XY
,
Hu
HY
,
Huang
KN
, et al
.
Ubiquitination of NOTCH2 by DTX3 suppresses the proliferation and migration of human esophageal carcinoma
.
Cancer Sci
.
2020
;
111
(
2
):
489
-
501
.
19.
Zou
Y
,
Yang
R
,
Huang
ML
, et al
.
NOTCH2 negatively regulates metastasis and epithelial-mesenchymal transition via TRAF6/AKT in nasopharyngeal carcinoma
.
J Exp Clin Cancer Res
.
2019
;
38
(
1
):
456
.
20.
Yang
J
,
Wei
P
,
Barbi
J
, et al
.
The deubiquitinase USP44 promotes Treg function during inflammation by preventing FOXP3 degradation
.
EMBO Rep
.
2020
;
21
(
9
):
e50308
.
21.
Zou
Q
,
Jin
J
,
Hu
H
, et al
.
USP15 stabilizes MDM2 to mediate cancer-cell survival and inhibit antitumor T cell responses
.
Nat Immunol
.
2014
;
15
(
6
):
562
-
570
.
22.
van Loosdregt
J
,
Fleskens
V
,
Fu
J
, et al
.
Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity
.
Immunity
.
2013
;
39
(
2
):
259
-
271
.
23.
Jahan
AS
,
Lestra
M
,
Swee
LK
, et al
.
Usp12 stabilizes the T-cell receptor complex at the cell surface during signaling
.
Proc Natl Acad Sci U S A
.
2016
;
113
(
6
):
E705
-
E714
.
24.
Yu
S
,
Tong
K
,
Zhao
Y
, et al
.
Paneth cell multipotency induced by Notch activation following injury
.
Cell Stem Cell
.
2018
;
23
(
1
):
46
-
59.e45
.
25.
Beltrao
P
,
Albanese
V
,
Kenner
LR
, et al
.
Systematic functional prioritization of protein posttranslational modifications
.
Cell
.
2012
;
150
(
2
):
413
-
425
.
26.
Akimov
V
,
Barrio-Hernandez
I
,
Hansen
SVF
, et al
.
UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites
.
Nat Struct Mol Biol
.
2018
;
25
(
7
):
631
-
640
.
27.
Povlsen
LK
,
Beli
P
,
Wagner
SA
, et al
.
Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass
.
Nat Cell Biol
.
2012
;
14
(
10
):
1089
-
1098
.
28.
Stukalov
A
,
Girault
V
,
Grass
V
, et al
.
Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV
.
Nature
.
2021
;
594
(
7862
):
246
-
252
.
29.
Zhang
H
,
Zheng
H
,
Zhu
J
, et al
.
Ubiquitin-modified proteome of SARS-CoV-2-infected host cells reveals insights into virus-host interaction and pathogenesis
.
J Proteome Res
.
2021
;
20
(
5
):
2224
-
2239
.
30.
Mevissen
TE
,
Hospenthal
MK
,
Geurink
PP
, et al
.
OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis
.
Cell
.
2013
;
154
(
1
):
169
-
184
.
31.
Kasikis
S
,
Etra
A
,
Levine
JE
.
Current and emerging targeted therapies for acute graft-versus-host disease
.
BioDrugs
.
2021
;
35
(
1
):
19
-
33
.
32.
Kim
Y
,
Yoo
JY
,
Lee
TJ
, et al
.
Complex role of NK cells in regulation of oncolytic virus-bortezomib therapy
.
Proc Natl Acad Sci U S A
.
2018
;
115
(
19
):
4927
-
4932
.
33.
Al-Homsi
AS
,
Feng
Y
,
Duffner
U
, et al
.
Bortezomib for the prevention and treatment of graft-versus-host disease after allogeneic hematopoietic stem cell transplantation
.
Exp Hematol
.
2016
;
44
(
9
):
771
-
777
.
34.
Schlafer
D
,
Shah
KS
,
Panjic
EH
,
Lonial
S
.
Safety of proteasome inhibitors for treatment of multiple myeloma
.
Expert Opin Drug Saf
.
2017
;
16
(
2
):
167
-
183
.
35.
Bolaños-Meade
J
,
Reshef
R
,
Fraser
R
, et al
.
Three prophylaxis regimens (tacrolimus, mycophenolate mofetil, and cyclophosphamide; tacrolimus, methotrexate, and bortezomib; or tacrolimus, methotrexate, and maraviroc) versus tacrolimus and methotrexate for prevention of graft-versus-host disease with haemopoietic cell transplantation with reduced-intensity conditioning: a randomised phase 2 trial with a non-randomised contemporaneous control group (BMT CTN 1203)
.
Lancet Haematol
.
2019
;
6
(
3
):
e132
-
e143
.
36.
Fischer
JC
,
Otten
V
,
Steiger
K
, et al
.
A20 deletion in T cells modulates acute graft-versus-host disease in mice
.
Eur J Immunol
.
2017
;
47
(
11
):
1982
-
1988
.
37.
Paik
J
,
Blair
HA
.
Dapagliflozin: a review in type 1 diabetes
.
Drugs
.
2019
;
79
(
17
):
1877
-
1884
.
38.
Dhillon
S
.
Dapagliflozin: a review in type 2 diabetes
.
Drugs
.
2019
;
79
(
10
):
1135
-
1146
.
39.
Chertow
GM
,
Vart
P
,
Jongs
N
, et al
.
Effects of dapagliflozin in stage 4 chronic kidney disease
.
J Am Soc Nephrol
.
2021
;
32
(
9
):
2352
-
2361
.
40.
Nassif
ME
,
Windsor
SL
,
Borlaug
BA
, et al
.
The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial
.
Nat Med
.
2021
;
27
(
11
):
1954
-
1960
.
41.
Dewan
P
,
Docherty
KF
,
Bengtsson
O
, et al
.
Effects of dapagliflozin in heart failure with reduced ejection fraction and chronic obstructive pulmonary disease: an analysis of DAPA-HF
.
Eur J Heart Fail
.
2021
;
23
(
4
):
632
-
643
.
42.
Schauer
NJ
,
Magin
RS
,
Liu
X
,
Doherty
LM
,
Buhrlage
SJ
.
Advances in discovering deubiquitinating enzyme (DUB) inhibitors
.
J Med Chem
.
2020
;
63
(
6
):
2731
-
2750
.
You do not currently have access to this content.
Sign in via your Institution