• Nanobody KB-VWF-D3.1 binds to the collagen-binding site in the VWF A3 domain, and it loses its binding upon proteolysis of VWF by ADAMTS13.

  • KB-VWF-D3.1 identified VWF degradation in patients with VWD, which correlated with a loss of larger VWF multimers.

von Willebrand factor (VWF) is a multimeric protein, the size of which is regulated via ADAMTS13-mediated proteolysis within the A2 domain. We aimed to isolate nanobodies distinguishing between proteolyzed and non-proteolyzed VWF, leading to the identification of a nanobody (designated KB-VWF-D3.1) targeting the A3 domain, the epitope of which overlaps the collagen-binding site. Although KB-VWF-D3.1 binds with similar efficiency to dimeric and multimeric derivatives of VWF, binding to VWF was lost upon proteolysis by ADAMTS13, suggesting that proteolysis in the A2 domain modulates exposure of its epitope in the A3 domain. We therefore used KB-VWF-D3.1 to monitor VWF degradation in plasma samples. Spiking experiments showed that a loss of 10% intact VWF could be detected using this nanobody. By comparing plasma from volunteers to that from congenital von Willebrand disease (VWD) patients, intact-VWF levels were significantly reduced for all VWD types, and most severely in VWD type 2A–group 2, in which mutations promote ADAMTS13-mediated proteolysis. Unexpectedly, we also observed increased proteolysis in some patients with VWD type 1 and VWD type 2M. A significant correlation (r = 0.51, P < .0001) between the relative amount of high–molecular weight multimers and levels of intact VWF was observed. Reduced levels of intact VWF were further found in plasmas from patients with severe aortic stenosis and patients receiving mechanical circulatory support. KB-VWF-D3.1 is thus a nanobody that detects changes in the exposure of its epitope within the collagen-binding site of the A3 domain. In view of its unique characteristics, it has the potential to be used as a diagnostic tool to investigate whether a loss of larger multimers is due to ADAMTS13-mediated proteolysis.

1.
Springer
TA
.
von Willebrand factor, Jedi knight of the bloodstream
.
Blood
.
2014
;
124
(
9
):
1412
-
1425
.
2.
Lenting
PJ
,
Christophe
OD
,
Denis
CV
.
von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends
.
Blood
.
2015
;
125
(
13
):
2019
-
2028
.
3.
Levy
GG
,
Nichols
WC
,
Lian
EC
, et al
.
Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura
.
Nature
.
2001
;
413
(
6855
):
488
-
494
.
4.
Crawley
JT
,
de Groot
R
,
Xiang
Y
,
Luken
BM
,
Lane
DA
.
Unraveling the scissile bond: how ADAMTS13 recognizes and cleaves von Willebrand factor
.
Blood
.
2011
;
118
(
12
):
3212
-
3221
.
5.
Dong
JF
,
Moake
JL
,
Nolasco
L
, et al
.
ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions
.
Blood
.
2002
;
100
(
12
):
4033
-
4039
.
6.
De Ceunynck
K
,
De Meyer
SF
,
Vanhoorelbeke
K
.
Unwinding the von Willebrand factor strings puzzle
.
Blood
.
2013
;
121
(
2
):
270
-
277
.
7.
De Ceunynck
K
,
Rocha
S
,
Feys
HB
, et al
.
Local elongation of endothelial cell-anchored von Willebrand factor strings precedes ADAMTS13 protein-mediated proteolysis
.
J Biol Chem
.
2011
;
286
(
42
):
36361
-
36367
.
8.
Springer
TA
.
Biology and physics of von Willebrand factor concatamers
.
J Thromb Haemost
.
2011
;
9
(
suppl 1
):
130
-
143
.
9.
Vincentelli
A
,
Susen
S
,
Le Tourneau
T
, et al
.
Acquired von Willebrand syndrome in aortic stenosis
.
N Engl J Med
.
2003
;
349
(
4
):
343
-
349
.
10.
Van Belle
E
,
Rauch
A
,
Vincentelli
A
, et al
.
Von Willebrand factor as a biological sensor of blood flow to monitor percutaneous aortic valve interventions
.
Circ Res
.
2015
;
116
(
7
):
1193
-
1201
.
11.
Vincent
F
,
Rauch
A
,
Loobuyck
V
, et al
.
Arterial pulsatility and circulating von Willebrand factor in patients on mechanical circulatory support
.
J Am Coll Cardiol
.
2018
;
71
(
19
):
2106
-
2118
.
12.
Haberichter
SL
,
Fahs
SA
,
Montgomery
RR
.
von Willebrand factor storage and multimerization: 2 independent intracellular processes
.
Blood
.
2000
;
96
(
5
):
1808
-
1815
.
13.
Rayes
J
,
Hommais
A
,
Legendre
P
, et al
.
Effect of von Willebrand disease type 2B and type 2M mutations on the susceptibility of von Willebrand factor to ADAMTS-13
.
J Thromb Haemost
.
2007
;
5
(
2
):
321
-
328
.
14.
Budde
U
.
Diagnosis of von Willebrand disease subtypes: implications for treatment
.
Haemophilia
.
2008
;
14
(
suppl 5
):
27
-
38
.
15.
Sharma
R
,
Flood
VH
.
Advances in the diagnosis and treatment of von Willebrand disease
.
Blood
.
2017
;
130
(
22
):
2386
-
2391
.
16.
Kato
S
,
Matsumoto
M
,
Matsuyama
T
,
Isonishi
A
,
Hiura
H
,
Fujimura
Y
.
Novel monoclonal antibody-based enzyme immunoassay for determining plasma levels of ADAMTS13 activity
.
Transfusion
.
2006
;
46
(
8
):
1444
-
1452
.
17.
Rauch
A
,
Caron
C
,
Vincent
F
, et al
.
A novel ELISA-based diagnosis of acquired von Willebrand disease with increased VWF proteolysis
.
Thromb Haemost
.
2016
;
115
(
5
):
950
-
959
.
18.
Kubo
M
,
Sakai
K
,
Hayakawa
M
, et al
.
Increased cleavage of von Willebrand factor by ADAMTS13 may contribute strongly to acquired von Willebrand syndrome development in patients with essential thrombocythemia
.
J Thromb Haemost
.
2022
;
20
(
7
):
1589
-
1598
.
19.
Veyradier
A
,
Boisseau
P
,
Fressinaud
E
, et al
.
A laboratory phenotype/genotype correlation of 1167 French patients from 670 families with von Willebrand disease: a new epidemiologic picture
.
Medicine (Baltim)
.
2016
;
95
(
11
):
e3038
.
20.
Moutel
S
,
Bery
N
,
Bernard
V
, et al
.
NaLi-H1: a universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies
.
Elife
.
2016
;
5
:
e16228
.
21.
Lenting
PJ
,
Westein
E
,
Terraube
V
, et al
.
An experimental model to study the in vivo survival of von Willebrand factor. Basic aspects and application to the R1205H mutation
.
J Biol Chem
.
2004
;
279
(
13
):
12102
-
12109
.
22.
Romijn
RA
,
Westein
E
,
Bouma
B
, et al
.
Mapping the collagen-binding site in the von Willebrand factor-A3 domain
.
J Biol Chem
.
2003
;
278
(
17
):
15035
-
15039
.
23.
Wohner
N
,
Sebastian
S
,
Muczynski
V
, et al
.
Osteoprotegerin modulates platelet adhesion to von Willebrand factor during release from endothelial cells
.
J Thromb Haemost
.
2022
;
20
(
3
):
755
-
766
.
24.
Navarrete
AM
,
Casari
C
,
Legendre
P
, et al
.
A murine model to characterize the antithrombotic effect of molecules targeting human von Willebrand factor
.
Blood
.
2012
;
120
(
13
):
2723
-
2732
.
25.
Hulstein
JJ
,
de Groot
PG
,
Silence
K
,
Veyradier
A
,
Fijnheer
R
,
Lenting
PJ
.
A novel nanobody that detects the gain-of-function phenotype of von Willebrand factor in ADAMTS13 deficiency and von Willebrand disease type 2B
.
Blood
.
2005
;
106
(
9
):
3035
-
3042
.
26.
Groot
E
,
de Groot
PG
,
Fijnheer
R
,
Lenting
PJ
.
The presence of active von Willebrand factor under various pathological conditions
.
Curr Opin Hematol
.
2007
;
14
(
3
):
284
-
289
.
27.
Djamiatun
K
,
van der Ven
AJ
,
de Groot
PG
, et al
.
Severe dengue is associated with consumption of von Willebrand factor and its cleaving enzyme ADAMTS-13
.
PLoS Negl Trop Dis
.
2012
;
6
(
5
):
e1628
.
28.
Hyseni
A
,
Kemperman
H
,
de Lange
DW
,
Kesecioglu
J
,
de Groot
PG
,
Roest
M
.
Active von Willebrand factor predicts 28-day mortality in patients with systemic inflammatory response syndrome
.
Blood
.
2014
;
123
(
14
):
2153
-
2156
.
29.
Chen
J
,
Hobbs
WE
,
Le
J
,
Lenting
PJ
,
de Groot
PG
,
Lopez
JA
.
The rate of hemolysis in sickle cell disease correlates with the quantity of active von Willebrand factor in the plasma
.
Blood
.
2011
;
117
(
13
):
3680
-
3683
.
30.
Rutten
B
,
Maseri
A
,
Cianflone
D
, et al
.
Plasma levels of active von Willebrand factor are increased in patients with first ST-segment elevation myocardial infarction: a multicenter and multiethnic study
.
Eur Heart J Acute Cardiovasc Care
.
2015
;
4
(
1
):
64
-
74
.
31.
Chen
SF
,
Xia
ZL
,
Han
JJ
, et al
.
Increased active von Willebrand factor during disease development in the aging diabetic patient population
.
Age (Dordr)
.
2013
;
35
(
1
):
171
-
177
.
32.
Zhang
L
,
Su
J
,
Shen
F
, et al
.
A novel monoclonal antibody against the von Willebrand factor A2 domain reduces its cleavage by ADAMTS13
.
J Hematol Oncol
.
2017
;
10
(
1
):
42
.
33.
Bendetowicz
AV
,
Wise
RJ
,
Gilbert
GE
.
Collagen-bound von Willebrand factor has reduced affinity for factor VIII
.
J Biol Chem
.
1999
;
274
(
18
):
12300
-
12307
.
34.
Ulrichts
H
,
Udvardy
M
,
Lenting
PJ
, et al
.
Shielding of the A1 domain by the D'D3 domains of von Willebrand factor modulates its interaction with platelet glycoprotein Ib-IX-V
.
J Biol Chem
.
2006
;
281
(
8
):
4699
-
4707
.
35.
Martin
C
,
Morales
LD
,
Cruz
MA
.
Purified A2 domain of von Willebrand factor binds to the active conformation of von Willebrand factor and blocks the interaction with platelet glycoprotein Ibalpha
.
J Thromb Haemost
.
2007
;
5
(
7
):
1363
-
1370
.
36.
Van Belle
E
,
Rauch
A
,
Vincent
F
, et al
.
Von Willebrand factor multimers during transcatheter aortic-valve replacement
.
N Engl J Med
.
2016
;
375
(
4
):
335
-
344
.
You do not currently have access to this content.
Sign in via your Institution