• Flt3ITD activates distinct transcriptional programs via distinct enhancers when it cooperates with NUP98 and Runx1 mutations.

  • Flt3ITD and NUP98-HOXD13 selectively activate type I interferon signaling and thus create a context-specific pathway dependency.

Acute myeloid leukemia (AML) initiation requires multiple rate-limiting mutations to cooperatively reprogram progenitor cell identity. For example, FLT3 internal tandem duplication (FLT3ITD) mutations cooperate with a variety of different initiating mutations to reprogram myeloid progenitor fate. These initiating mutations often skew toward either pediatric or adult AML patient populations, though FLT3ITD itself occurs at similar frequencies in both age groups. This raises the question of whether FLT3ITD might induce distinct transcriptional programs and unmask distinct therapeutic vulnerabilities when paired with pediatric, as opposed to adult AML-initiating mutations. To explore this possibility, we compared AML evolution in mice that carried Flt3ITD/NUP98-HOXD13 (NHD13) or Flt3ITD/Runx1DEL mutation pairs, which are respectively most common in pediatric and adult AML. Single-cell analyses and epigenome profiling revealed distinct interactions between Flt3ITD and its cooperating mutations. Whereas Flt3ITD and Flt3ITD/Runx1DEL caused aberrant expansion of myeloid progenitors, Flt3ITD/NHD13 drove the emergence of a pre-AML population that did not resemble normal hematopoietic progenitors. Differences between Flt3ITD/Runx1DEL and Flt3ITD/NHD13 cooperative target gene expression extended to fully transformed AML as well. Flt3ITD/NHD13 cooperative target genes were enriched in human NUP98-translocated AML. Flt3ITD/NHD13 selectively hijacked type I interferon signaling to drive expansion of the pre-AML population. Blocking interferon signaling delayed AML initiation and extended survival. Thus, common AML driver mutations, such as FLT3ITD, can coopt different mechanisms of transformation in different genetic contexts. Furthermore, pediatric-biased NUP98 fusions convey actionable interferon dependence.

1.
Bolouri
H
,
Farrar
JE
,
Triche
T
, et al
.
The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions
.
Nat Med
.
2018
;
24
(
1
):
103
-
112
.
2.
Cancer Genome Atlas Research Network
.
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
.
N Engl J Med
.
2013
;
368
(
22
):
2059
-
2074
.
3.
Jan
M
,
Snyder
TM
,
Corces-Zimmerman
MR
, et al
.
Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia
.
Sci Transl Med
.
2012
;
4
(
149
):
149ra118
.
4.
Lee
BH
,
Williams
IR
,
Anastasiadou
E
, et al
.
FLT3 internal tandem duplication mutations induce myeloproliferative or lymphoid disease in a transgenic mouse model
.
Oncogene
.
2005
;
24
(
53
):
7882
-
7892
.
5.
Mallardo
M
,
Caronno
A
,
Pruneri
G
, et al
.
NPMc+ and FLT3_ITD mutations cooperate in inducing acute leukaemia in a novel mouse model
.
Leukemia
.
2013
;
27
(
11
):
2248
-
2251
.
6.
Yang
L
,
Rodriguez
B
,
Mayle
A
, et al
.
DNMT3A loss drives enhancer hypomethylation in FLT3-ITD-associated leukemias
.
Cancer Cell
.
2016
;
29
(
6
):
922
-
934
.
7.
Meyer
SE
,
Qin
T
,
Muench
DE
, et al
.
DNMT3A haploinsufficiency transforms FLT3ITD myeloproliferative disease into a rapid, spontaneous, and fully penetrant acute myeloid leukemia
.
Cancer Discov
.
2016
;
6
(
5
):
501
-
515
.
8.
Rau
R
,
Magoon
D
,
Greenblatt
S
, et al
.
NPMc+ cooperates with Flt3/ITD mutations to cause acute leukemia recapitulating human disease
.
Exp Hematol
.
2014
;
42
(
2
):
101
-
113.e105
.
9.
Mead
AJ
,
Kharazi
S
,
Atkinson
D
, et al
.
FLT3-ITDs instruct a myeloid differentiation and transformation bias in lymphomyeloid multipotent progenitors
.
Cell Rep
.
2013
;
3
(
6
):
1766
-
1776
.
10.
Porter
SN
,
Cluster
AS
,
Yang
W
, et al
.
Fetal and neonatal hematopoietic progenitors are functionally and transcriptionally resistant to Flt3-ITD mutations
.
Elife
.
2016
;
5
:
e18882
.
11.
Shih
AH
,
Jiang
Y
,
Meydan
C
, et al
.
Mutational cooperativity linked to combinatorial epigenetic gain of function in acute myeloid leukemia
.
Cancer Cell
.
2015
;
27
(
4
):
502
-
515
.
12.
Greenblatt
S
,
Li
L
,
Slape
C
, et al
.
Knock-in of a FLT3/ITD mutation cooperates with a NUP98-HOXD13 fusion to generate acute myeloid leukemia in a mouse model
.
Blood
.
2012
;
119
(
12
):
2883
-
2894
.
13.
Yun
H
,
Narayan
N
,
Vohra
S
, et al
.
Mutational synergy during leukemia induction remodels chromatin accessibility, histone modifications and three-dimensional DNA topology to alter gene expression
.
Nat Genet
.
2021
;
53
(
10
):
1443
-
1455
.
14.
Michmerhuizen
NL
,
Klco
JM
,
Mullighan
CG
.
Mechanistic insights and potential therapeutic approaches for NUP98-rearranged hematologic malignancies
.
Blood
.
2020
;
136
(
20
):
2275
-
2289
.
15.
Ostronoff
F
,
Othus
M
,
Gerbing
RB
, et al
.
NUP98/NSD1 and FLT3/ITD coexpression is more prevalent in younger AML patients and leads to induction failure: a COG and SWOG report
.
Blood
.
2014
;
124
(
15
):
2400
-
2407
.
16.
Hollink
IH
,
van den Heuvel-Eibrink
MM
,
Arentsen-Peters
ST
, et al
.
NUP98/NSD1 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct HOX gene expression pattern
.
Blood
.
2011
;
118
(
13
):
3645
-
3656
.
17.
Ahn
JH
,
Davis
ES
,
Daugird
TA
, et al
.
Phase separation drives aberrant chromatin looping and cancer development
.
Nature
.
2021
;
595
(
7868
):
591
-
595
.
18.
Chandra
B
,
Michmerhuizen
NL
,
Shirnekhi
HK
, et al
.
Phase separation mediates NUP98 fusion oncoprotein leukemic transformation
.
Cancer Discov
.
2022
;
12
(
4
):
1152
-
1169
.
19.
Sun
Y
,
Zhou
B
,
Mao
F
, et al
.
HOXA9 reprograms the enhancer landscape to promote leukemogenesis
.
Cancer Cell
.
2018
;
34
(
4
):
643
-
658.e645
.
20.
Wang
GG
,
Cai
L
,
Pasillas
MP
,
Kamps
MP
.
NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis
.
Nat Cell Biol
.
2007
;
9
(
7
):
804
-
812
.
21.
Xu
H
,
Valerio
DG
,
Eisold
ME
, et al
.
NUP98 fusion proteins interact with the NSL and MLL1 complexes to drive leukemogenesis
.
Cancer Cell
.
2016
;
30
(
6
):
863
-
878
.
22.
Thanasopoulou
A
,
Tzankov
A
,
Schwaller
J
.
Potent co-operation between the NUP98-NSD1 fusion and the FLT3-ITD mutation in acute myeloid leukemia induction
.
Haematologica
.
2014
;
99
(
9
):
1465
-
1471
.
23.
Struski
S
,
Lagarde
S
,
Bories
P
, et al
.
NUP98 is rearranged in 3.8% of pediatric AML forming a clinical and molecular homogenous group with a poor prognosis
.
Leukemia
.
2017
;
31
(
3
):
565
-
572
.
24.
Slape
C
,
Liu
LY
,
Beachy
S
,
Aplan
PD
.
Leukemic transformation in mice expressing a NUP98-HOXD13 transgene is accompanied by spontaneous mutations in Nras, Kras, and Cbl
.
Blood
.
2008
;
112
(
5
):
2017
-
2019
.
25.
Mohanty
S
,
Jyotsana
N
,
Sharma
A
, et al
.
Targeted inhibition of the NUP98-NSD1 fusion oncogene in acute myeloid leukemia
.
Cancers (Basel)
.
2020
;
12
(
10
):
2766
.
26.
Prigge
JR
,
Hoyt
TR
,
Dobrinen
E
,
Capecchi
MR
,
Schmidt
EE
,
Meissner
N
.
Type I IFNs act upon hematopoietic progenitors to protect and maintain hematopoiesis during pneumocystis lung infection in mice
.
J Immunol
.
2015
;
195
(
11
):
5347
-
5357
.
27.
Lee
BH
,
Tothova
Z
,
Levine
RL
, et al
.
FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic myelomonocytic leukemia
.
Cancer Cell
.
2007
;
12
(
4
):
367
-
380
.
28.
Taniuchi
I
,
Osato
M
,
Egawa
T
, et al
.
Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development
.
Cell
.
2002
;
111
(
5
):
621
-
633
.
29.
Lin
YW
,
Slape
C
,
Zhang
Z
,
Aplan
PD
.
NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia
.
Blood
.
2005
;
106
(
1
):
287
-
295
.
30.
Li
Y
,
Kong
W
,
Yang
W
, et al
.
Single-cell analysis of neonatal HSC ontogeny reveals gradual and uncoordinated transcriptional reprogramming that begins before birth
.
Cell Stem Cell
.
2020
;
27
(
5
):
732
-
747
.
31.
Chen
R
,
Okeyo-Owuor
T
,
Patel
RM
, et al
.
Kmt2c mutations enhance HSC self-renewal capacity and convey a selective advantage after chemotherapy
.
Cell Rep
.
2021
;
34
(
7
):
108751
.
32.
Porter
SN
,
Cluster
AS
,
Signer
RA
, et al
.
Pten cell autonomously modulates the hematopoietic stem cell response to inflammatory cytokines
.
Stem Cell Reports
.
2016
;
6
(
6
):
806
-
814
.
33.
Gundry
MC
,
Brunetti
L
,
Lin
A
, et al
.
Highly efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9
.
Cell Rep
.
2016
;
17
(
5
):
1453
-
1461
.
34.
Pietras
EM
,
Reynaud
D
,
Kang
YA
, et al
.
Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions
.
Cell Stem Cell
.
2015
;
17
(
1
):
35
-
46
.
35.
Pronk
CJ
,
Rossi
DJ
,
Mansson
R
, et al
.
Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy
.
Cell Stem Cell
.
2007
;
1
(
4
):
428
-
442
.
36.
Hu
Y
,
Smyth
GK
.
ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays
.
J Immunol Methods
.
2009
;
347
(
1-2
):
70
-
78
.
37.
Butler
A
,
Hoffman
P
,
Smibert
P
,
Papalexi
E
,
Satija
R
.
Integrating single-cell transcriptomic data across different conditions, technologies, and species
.
Nat Biotechnol
.
2018
;
36
(
5
):
411
-
420
.
38.
Venkatasubramanian
M
,
Chetal
K
,
Schnell
DJ
,
Atluri
G
,
Salomonis
N
.
Resolving single-cell heterogeneity from hundreds of thousands of cells through sequential hybrid clustering and NMF
.
Bioinformatics
.
2020
;
36
(
12
):
3773
-
3780
.
39.
Hanzelmann
S
,
Castelo
R
,
Guinney
J
.
GSVA: gene set variation analysis for microarray and RNA-seq data
.
BMC Bioinformatics
.
2013
;
14
:
7
.
40.
McLeod
C
,
Gout
AM
,
Zhou
X
, et al
.
St. Jude Cloud: a pediatric cancer genomic data-sharing ecosystem
.
Cancer Discov
.
2021
;
11
(
5
):
1082
-
1099
.
41.
Dobin
A
,
Davis
CA
,
Schlesinger
F
, et al
.
STAR: ultrafast universal RNA-seq aligner
.
Bioinformatics
.
2013
;
29
(
1
):
15
-
21
.
42.
Ritchie
ME
,
Phipson
B
,
Wu
D
, et al
.
limma powers differential expression analyses for RNA-sequencing and microarray studies
.
Nucleic Acids Res
.
2015
;
43
(
7
):
e47
.
43.
Joshi-Tope
G
,
Gillespie
M
,
Vastrik
I
, et al
.
Reactome: a knowledgebase of biological pathways
.
Nucleic Acids Res
.
2005
;
33
(
database issue
):
D428
-
D432
.
44.
Luo
W
,
Friedman
MS
,
Shedden
K
,
Hankenson
KD
,
Woolf
PJ
.
GAGE: generally applicable gene set enrichment for pathway analysis
.
BMC Bioinformatics
.
2009
;
10
:
161
.
45.
Subramanian
A
,
Tamayo
P
,
Mootha
VK
, et al
.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
43
):
15545
-
15550
.
46.
Corces
MR
,
Trevino
AE
,
Hamilton
EG
, et al
.
An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues
.
Nat Methods
.
2017
;
14
(
10
):
959
-
962
.
47.
Schmidl
C
,
Rendeiro
AF
,
Sheffield
NC
,
Bock
C
.
ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors
.
Nat Methods
.
2015
;
12
(
10
):
963
-
965
.
48.
Roadmap Epigenomics
Consortium
,
Kundaje
A
,
Meuleman
W
, et al
.
Integrative analysis of 111 reference human epigenomes
.
Nature
.
2015
;
518
(
7539
):
317
-
330
.
49.
Li
Q
,
Brown
JB
,
Huang
H
,
Bickel
PJ
.
Measuring reproducibility of high-throughput experiments
.
Ann Appl Stat
.
2011
;
5
(
3
):
1752
-
1779
.
50.
Zhou
X
,
Lowdon
RF
,
Li
D
, et al
.
Exploring long-range genome interactions using the WashU Epigenome Browser
.
Nat Methods
.
2013
;
10
(
5
):
375
-
376
.
51.
Liu
Y
,
Gu
Z
,
Cao
H
, et al
.
Convergence of oncogenic cooperation at single-cell and single-gene levels drives leukemic transformation
.
Nat Commun
.
2021
;
12
(
1
):
6323
.
52.
Cauchy
P
,
James
SR
,
Zacarias-Cabeza
J
, et al
.
Chronic FLT3-ITD signaling in acute myeloid leukemia is connected to a specific chromatin signature
.
Cell Rep
.
2015
;
12
(
5
):
821
-
836
.
53.
Olsson
A
,
Venkatasubramanian
M
,
Chaudhri
VK
, et al
.
Single-cell analysis of mixed-lineage states leading to a binary cell fate choice
.
Nature
.
2016
;
537
(
7622
):
698
-
702
.
54.
Porter
SN
,
Magee
JA
.
PRKCH regulates hematopoietic stem cell function and predicts poor prognosis in acute myeloid leukemia
.
Exp Hematol
.
2017
;
53
:
43
-
47
.
55.
Schmoellerl
J
,
Barbosa
IAM
,
Eder
T
, et al
.
CDK6 is an essential direct target of NUP98 fusion proteins in acute myeloid leukemia
.
Blood
.
2020
;
136
(
4
):
387
-
400
.
56.
Kunimoto
H
,
Meydan
C
,
Nazir
A
, et al
.
Cooperative epigenetic remodeling by TET2 loss and NRAS mutation drives myeloid transformation and MEK inhibitor sensitivity
.
Cancer Cell
.
2018
;
33
(
1
):
44
-
59.e48
.
57.
Gonciarz
M
,
Pawlak-Bus
K
,
Leszczynski
P
,
Owczarek
W
.
TYK2 as a therapeutic target in the treatment of autoimmune and inflammatory diseases
.
Immunotherapy
.
2021
;
13
(
13
):
1135
-
1150
.
58.
Papp
K
,
Gordon
K
,
Thaci
D
, et al
.
Phase 2 Trial of selective tyrosine kinase 2 inhibition in psoriasis
.
N Engl J Med
.
2018
;
379
(
14
):
1313
-
1321
.
You do not currently have access to this content.
Sign in via your Institution