• Hydroxyurea at MTD is associated with a significant and sustained lower malaria incidence among children with sickle cell anemia in Africa.

  • An absolute neutrophil count below 3.0 × 109/L is an important treatment threshold, below which the malaria incidence is reduced.

Realizing Effectiveness Across Continents with Hydroxyurea (REACH, NCT01966731) provides hydroxyurea at maximum tolerated dose (MTD) for children with sickle cell anemia (SCA) in sub-Saharan Africa. Beyond reducing SCA-related clinical events, documented treatment benefits include ∼50% reduction in malaria incidence. To identify associations and propose mechanisms by which hydroxyurea could be associated with lower malaria rates, infections were recorded across all clinical sites (Angola, Democratic Republic of Congo, Kenya, and Uganda). Hazard ratios (HR) with 95% confidence intervals (CIs) for baseline demographics, and time-varying laboratory and clinical parameters were estimated in a modified Cox gap-time model for repeated events. Over 3387 patient-years of hydroxyurea treatment, 717 clinical malaria episodes occurred in 336 of 606 study participants; over half were confirmed by blood smear and/or rapid diagnostic testing with 97.8% Plasmodium falciparum. In univariate analysis limited to 4 confirmed infections per child, malaria risk was significantly associated with absolute neutrophil count (ANC), splenomegaly, hemoglobin, and achieving MTD; age, malaria season, MTD dose, fetal hemoglobin, α-thalassemia, and glucose-6-phosphate dehydrogenase deficiency had no effect. In multivariable regression of confirmed infections, ANC was significant (HR, 1.37 per doubled value; 95% CI, 1.10-1.70; P = .0052), and ANC values <3.0 × 109/L were associated with lower malaria incidence. Compared with nonpalpable spleen, 1- to 4-cm splenomegaly also was associated with higher malaria risk (HR, 2.01; 95% CI, 1.41-2.85; P = .0001). Hydroxyurea at MTD is associated with lower malaria incidence in SCA through incompletely defined mechanisms, but treatment-associated mild myelosuppression with ANC <3.0 × 109/L is salutary. Splenomegaly is an unexplained risk factor for malaria infections among children with SCA in Africa.

1.
McGann
PT
,
Tshilolo
L
,
Santos
B
, et al
.
Hydroxyurea therapy for children with sickle cell anemia in sub-Saharan Africa: rationale and design of the REACH trial
.
Pediatr Blood Cancer
.
2016
;
63
(
1
):
98
-
104
.
2.
McGann
PT
,
Williams
TN
,
Olupot-Olupot
P
, et al
.
Realizing effectiveness across continents with hydroxyurea: enrollment and baseline characteristics of the multicenter REACH study in sub-Saharan Africa
.
Am J Hematol
.
2018
;
93
(
4
):
537
-
545
.
3.
Tshilolo
L
,
Tomlinson
G
,
Williams
TN
, et al
.
Hydroxyurea for children with sickle cell anemia in sub-Saharan Africa
.
N Engl J Med
.
2019
;
380
(
2
):
121
-
131
.
4.
McGann
PT
,
Williams
AM
,
Ellis
G
, et al
.
Prevalence of inherited blood disorders and associations with malaria and anemia in Malawian children
.
Blood Adv
.
2018
;
2
(
21
):
3035
-
3044
.
5.
Rougemont
M
,
Van Saanen
M
,
Sahli
R
,
Hinrikson
HP
,
Bille
J
,
Jaton
K
.
Detection of four Plasmodium species in blood from humans by 18S rRNA gene subunit-based and species-specific real-time PCR assays
.
J Clin Microbiol
.
2004
;
42
(
12
):
5636
-
5643
.
6.
Prentice
RL
,
Williams
BJ
,
Peterson
AV
.
On the regression analysis of multivariate failure time data
.
Biometrika
.
1981
;
68
(
2
):
373
-
379
.
7.
Amorim
LDAF
,
Cai
J
.
Modelling recurrent events: a tutorial for analysis in epidemiology
.
Int J Epidemiol
.
2015
;
44
(
1
):
324
-
333
.
8.
World Health Organization
.
World malaria report 2021.
. Accessed 22 March 2022. https://www.who.int/publications/i/item/9789240040496.
9.
Alonso
PL
,
O’Brien
KL
.
A malaria vaccine for Africa – an important step in a century-long quest
.
N Engl J Med
.
2022
;
386
(
11
):
1005
-
1007
.
10.
Williams
TN
,
Obaro
SK
.
Sickle cell disease and malaria morbidity: a tale with two tails
.
Trends Parasitol
.
2011
;
27
(
7
):
315
-
320
.
11.
McAuley
CF
,
Webb
C
,
Makani
J
, et al
.
High mortality from Plasmodium falciparum malaria in children living with sickle cell anemia on the coast of Kenya
.
Blood
.
2010
;
116
(
10
):
1663
-
1668
.
12.
Opoka
RO
,
Bangirana
P
,
Idro
R
,
Shabani
E
,
Namazzi
R
,
John
CC
.
Lack of mortality in 22 children with sickle cell anemia and severe malaria anemia
.
Pediatr Blood Cancer
.
2018
;
65
(
1
):
e26745
.
13.
Opoka
RO
,
Ndugwa
CM
,
Latham
TS
, et al
.
Novel use of hydroxyurea in an African region with malaria (NOHARM): a trial for children with sickle cell anemia
.
Blood
.
2017
;
130
(
24
):
2585
-
2593
.
14.
Nakibuuka
V
,
Ndeezi
G
,
Nakiboneka
D
,
Ndugwa
CM
,
Tumwine
JK
.
Presumptive treatment with sulphadozine-pyrimethamine versus weekly chloroquine for malaria prophylaxis in children with sickle cell anaemia in Uganda: a randomized controlled trial
.
Malar J
.
2009
;
8
:
237
.
15.
Kajubi
R
,
Ochieng
T
,
Jagannathan
P
, et al
.
Monthly sulfadoxine-pyrimethamine versus dihydroartemisinin-piperaquine for intermittent preventive treatment of malaria in pregnancy: a double-blind, randomized, controlled, superiority trial
.
Lancet
.
2019
;
393
(
10179
):
1428
-
1439
.
16.
Cappadoro
M
,
Giribaldi
G
,
O’Brien
E
, et al
.
Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum may explain malaria protection in G6PD deficiency
.
Blood
.
1998
;
92
(
7
):
2527
-
2534
.
17.
Uyoga
S
,
Ndila
CM
,
Macharia
AW
, et al
.
Glucose-6-phosphate dehydrogenase deficiency and the risk of malaria and other diseases in children in Kenya: a case-control and a cohort study
.
Lancet Haematol
.
2015
;
2
(
10
):
e437
-
444
.
18.
Malaria Genomic Epidemiology Network
.
Reappraisal of known malaria resistance loci in a large multicenter study
.
Nat Genet
.
2014
;
46
(
11
):
1197
-
1204
.
19.
Watson
JA
,
Leopold
SJ
,
Simpson
JA
,
Day
NPJ
,
Dondorp
AM
,
White
NJ
.
Collider bias and the apparent protective effect of glucose-6-phosphate dehydrogenase deficiency on cerebral malaria
.
Elife
.
2019
;
8
:
e43154
.
20.
Flint
J
,
Harding
RM
,
Boyce
AJ
,
Clegg
JB
.
The population genetics of the haemoglobinopathies
.
Baillieres Clin Haematol
.
1998
;
11
(
1
):
1
-
51
.
21.
Wambua
S
,
Mwangi
TW
,
Kortok
M
, et al
.
The effect of alpha+-thalassaemia on the incidence of malaria and other diseases in children living on the coast of Kenya
.
PLoS Med
.
2006
;
3
(
5
):
e158
.
22.
Williams
TN
,
Mwangi
TW
,
Wambua
S
, et al
.
Negative epistasis between the malaria-protective effects of alpha+ thalassemia and the sickle cell trait
.
Nat Genet
.
2005
;
37
(
11
):
1253
-
1257
.
23.
Aitken
EH
,
Alemu
A
,
Rogerson
SJ
.
Neutrophils and malaria
.
Front Immunol
.
2018
;
9
:
3005
.
24.
Pollenus
E
,
Gouwy
M
,
Van den Steen
PE
.
Neutrophils in malaria: the good, the bad or the ugly?
.
Parasite Immunol
.
2022
:
e12912
.
25.
Ware
RE
.
How I use hydroxyurea to treat young patients with sickle cell anemia
.
Blood
.
2010
;
115
(
26
):
5300
-
5311
.
26.
Boone
KE
,
Watters
DA
.
The incidence of malaria after splenectomy in Papua New Guinea
.
BMJ
.
1995
;
311
(
7015
):
1273
.
27.
Bach
O
,
Baier
M
,
Pullwitt
A
, et al
.
Falciparum malaria after splenectomy: a prospective controlled study of 33 previously splenectomized Malawian adults
.
Trans R Soc Trop Med Hyg
.
2005
;
99
(
11
):
861
-
867
.
28.
Hankins
JS
,
Ware
RE
,
Rogers
ZR
, et al
.
Long-term hydroxyurea therapy for infants with sickle cell anemia: the HUSOFT extension study
.
Blood
.
2005
;
106
(
7
):
2269
-
2275
.
29.
Hankins
JS
,
Helton
KJ
,
McCarville
MB
,
Li
CS
,
Wang
WC
,
Ware
RE
.
Preservation of spleen and brain function in children with sickle cell anemia treated with hydroxyurea
.
Pediatr Blood Cancer
.
2008
;
50
(
2
):
293
-
297
.
30.
Kotlyar
S
,
Nteziyaremye
J
,
Olupot-Olupot
P
,
Akech
SO
,
Moore
CL
,
Maitland
K
.
Spleen volume and clinical disease manifestations of severe Plasmodium falciparum malaria in African children
.
Trans R Soc Trop Med Hyg
.
2014
;
108
(
5
):
283
-
289
.
31.
Buffet
PA
,
Safeukui
I
,
Deplaine
G
, et al
.
The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology
.
Blood
.
2011
;
117
(
2
):
381
-
392
.
32.
Henry
B
,
Roussel
C
,
Carucci
M
,
Brousse
V
,
Ndour
PA
,
Buffet
P
.
The human spleen in malaria: filter or shelter?
.
Trends Parasitol
.
2020
;
36
(
5
):
435
-
446
.
33.
Adekile
AD
,
Adeodu
OO
,
Jeje
AA
,
Odesanmi
WO
.
Persistent gross splenomegaly in Nigerian patients with sickle cell anaemia: relationship to malaria
.
Ann Trop Paediatr
.
1988
;
8
(
2
):
103
-
107
.
34.
Hackett
LW
.
Spleen measurement in malaria
.
Natl Mal Soc J
.
1944
;
3
(
2
):
121
-
133
.
35.
Billig
EMW
,
McQueen
PG
,
McKenzie
FE
.
Foetal haemoglobin and the dynamics of paediatric malaria
.
Malar J
.
2012
;
11
:
396
.
36.
Pasvol
G
,
Weatherall
DJ
,
Wilson
RJ
.
Effects of foetal haemoglobin on susceptibility of red cells to Plasmodium falciparum
.
Nature
.
1977
;
270
(
5633
):
171
-
173
.
37.
Shear
HL
,
Grinberg
L
,
Gilman
J
, et al
.
Transgenic mice expressing human fetal globin are protected from malaria by a novel mechanism
.
Blood
.
1998
;
92
(
7
):
2520
-
2526
.
38.
Archer
NM
,
Petersen
N
,
Duraisingh
MT
.
Fetal hemoglobin does not inhibit Plasmodium falciparum growth
.
Blood Adv
.
2019
;
3
(
14
):
2149
-
2152
.
39.
Elford
HL
.
Effect of hydroxyurea on ribonucleotide reductase
.
Biochem Biophys Res Commun
.
1968
;
33
(
1
):
129
-
135
.
40.
Snyder
RD
.
The role of deoxynucleoside triphosphate pools in the inhibition of DNA-excision repair and replication in human cells by hydroxyurea
.
Mutat Res
.
1984
;
131
(
3–4
):
163
-
172
.
41.
Holland
KP
,
Elford
HL
,
Bracchi
V
,
Annis
CG
,
Schuster
SM
,
Chakrabarti
D
.
Antimalarial activities of polyhydroxyphenyl and hydroxamic acid derivatives
.
Antimicrob Agents Chemother
.
1998
;
42
(
9
):
2456
-
2458
.
42.
Pino
P
,
Taoufiq
Z
,
Brun
M
, et al
.
Effects of hydroxyurea on malaria, parasite growth and adhesion in experimental models
.
Parasite Immunol
.
2006
;
28
(
12
):
675
-
680
.
43.
Lori
F
,
Malykh
A
,
Cara
A
, et al
.
Hydroxyurea as an inhibitor of human immunodeficiency virus-type 1 replication
.
Science
.
1994
;
266
(
5186
):
801
-
805
.
44.
Nyakeriga
AM
,
Troye-Blomberg
M
,
Dorfman
JR
, et al
.
Iron deficiency and malaria among children living on the coast of Kenya
.
J Infect Dis
.
2004
;
190
(
3
):
439
-
447
.
45.
Lytton
SD
,
Mester
B
,
Libman
J
,
Shanzer
A
,
Cabantchik
ZI
.
Mode of action of iron (III) chelators as antimalarials: II. Evidence for differential effects on parasite iron-dependent nucleic acid synthesis
.
Blood
.
1994
;
84
(
3
):
910
-
915
.
46.
Therrell
BL
,
Lloyd-Puryear
MA
,
Ohene-Frempong
K
, et al
.
Empowering newborn screening programs in African countries through establishment of an international collaborative effort
.
J Community Genet
.
2020
;
11
(
3
):
253
-
268
.
47.
Green
NS
,
Zapfel
A
,
Nnodu
OE
, et al
.
The Consortium on Newborn Screening in Africa for sickle cell disease: study rationale and methodology
.
Blood Adv
.
2022
;
6
(
24
):
6187
-
6197
.
48.
Uyoga
S
,
Macharia
AW
,
Mochamah
G
, et al
.
The epidemiology of sickle cell disease in children recruited in infancy in Kilifi, Kenya: a prospective cohort study
.
Lancet Glob Health
.
2019
;
7
(
10
):
e1458
-
e1466
.
49.
Ranque
B
,
Kitenge
R
,
Ndiaye
DD
, et al
.
Estimating the risk of child mortality attributable to sickle cell anaemia in sub-Saharan Africa: a retrospective, multicentre, case-control study
.
Lancet Haematol
.
2022
;
9
(
3
):
e208
-
e216
.
50.
Uyoga
S
,
Olupot-Olupot
P
,
Connon
R
, et al
.
Sickle cell anaemia and severe Plasmodium falciparum malaria: a secondary analysis of the Transfusion and Treatment of African Clinical Trial (TRACT)
.
Lancet Child Adolesc Health
.
2022
;
6
(
9
):
606
-
613
.
You do not currently have access to this content.
Sign in via your Institution