• Whole genome sequencing of 36 Hodgkin lymphoma (HL) families identifies 33 coding and 11 noncoding HL-risk variants.

  • Recurrent damaging variants are observed in known (KDR and KLHDC8B) and novel (PAX5, GATA3, and POLR1E) predisposing loci.

Familial aggregation of Hodgkin lymphoma (HL) has been demonstrated in large population studies, pointing to genetic predisposition to this hematological malignancy. To understand the genetic variants associated with the development of HL, we performed whole genome sequencing on 234 individuals with and without HL from 36 pedigrees that had 2 or more first-degree relatives with HL. Our pedigree selection criteria also required at least 1 affected individual aged <21 years, with the median age at diagnosis of 21.98 years (3-55 years). Family-based segregation analysis was performed for the identification of coding and noncoding variants using linkage and filtering approaches. Using our tiered variant prioritization algorithm, we identified 44 HL-risk variants in 28 pedigrees, of which 33 are coding and 11 are noncoding. The top 4 recurrent risk variants are a coding variant in KDR (rs56302315), a 5′ untranslated region variant in KLHDC8B (rs387906223), a noncoding variant in an intron of PAX5 (rs147081110), and another noncoding variant in an intron of GATA3 (rs3824666). A newly identified splice variant in KDR (c.3849-2A>C) was observed for 1 pedigree, and high-confidence stop-gain variants affecting IRF7 (p.W238∗) and EEF2KMT (p.K116∗) were also observed. Multiple truncating variants in POLR1E were found in 3 independent pedigrees as well. Whereas KDR and KLHDC8B have previously been reported, PAX5, GATA3, IRF7, EEF2KMT, and POLR1E represent novel observations. Although there may be environmental factors influencing lymphomagenesis, we observed segregation of candidate germline variants likely to predispose HL in most of the pedigrees studied.

1.
Caporaso
NE
,
Goldin
LR
,
Anderson
WF
,
Landgren
O
.
Current insight on trends, causes, and mechanisms of Hodgkin's lymphoma
.
Cancer J
.
2009
;
15
(
2
):
117
-
123
.
2.
Hidalgo
J
,
Gasull
T
,
Giralt
M
,
Armario
A
.
Brain metallothionein in stress
.
Biol Signals
.
1994
;
3
(
4
):
198
-
210
.
3.
Mack
TM
,
Cozen
W
,
Shibata
DK
, et al
.
Concordance for Hodgkin's disease in identical twins suggesting genetic susceptibility to the young-adult form of the disease
.
N Engl J Med
.
1995
;
332
(
7
):
413
-
418
.
4.
Kharazmi
E
,
Fallah
M
,
Pukkala
E
, et al
.
Risk of familial classical Hodgkin lymphoma by relationship, histology, age, and sex: a joint study from five Nordic countries
.
Blood
.
2015
;
126
(
17
):
1990
-
1995
.
5.
Kuppers
R
.
The biology of Hodgkin's lymphoma
.
Nat Rev Cancer
.
2009
;
9
(
1
):
15
-
27
.
6.
Goldin
LR
,
Pfeiffer
RM
,
Gridley
G
, et al
.
Familial aggregation of Hodgkin lymphoma and related tumors
.
Cancer
.
2004
;
100
(
9
):
1902
-
1908
.
7.
Cerhan
JR
,
Slager
SL
.
Familial predisposition and genetic risk factors for lymphoma
.
Blood
.
2015
;
126
(
20
):
2265
-
2273
.
8.
Spina
V
,
Bruscaggin
A
,
Cuccaro
A
, et al
.
Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in classical Hodgkin lymphoma
.
Blood
.
2018
;
131
(
22
):
2413
-
2425
.
9.
Camus
V
,
Viennot
M
,
Lequesne
J
, et al
.
Targeted genotyping of circulating tumor DNA for classical Hodgkin lymphoma monitoring: a prospective study
.
Haematologica
.
2021
;
106
(
1
):
154
-
162
.
10.
Desch
AK
,
Hartung
K
,
Botzen
A
, et al
.
Genotyping circulating tumor DNA of pediatric Hodgkin lymphoma
.
Leukemia
.
2020
;
34
(
1
):
151
-
166
.
11.
Sobesky
S
,
Mammadova
L
,
Cirillo
M
, et al
.
Exhaustive circulating tumor DNA sequencing reveals the genomic landscape of Hodgkin lymphoma and facilitates ultrasensitive detection of minimal residual disease. medRxiv
. Preprint posted online 16 March 2021https://doi.org/10.1101/2021.03.16.21253679.
12.
Diepstra
A
,
Niens
M
,
Vellenga
E
, et al
.
Association with HLA class I in Epstein-Barr-virus-positive and with HLA class III in Epstein-Barr-virus-negative Hodgkin's lymphoma
.
Lancet
.
2005
;
365
(
9478
):
2216
-
2224
.
13.
Cozen
W
,
Li
D
,
Best
T
, et al
.
A genome-wide meta-analysis of nodular sclerosing Hodgkin lymphoma identifies risk loci at 6p21.32
.
Blood
.
2012
;
119
(
2
):
469
-
475
.
14.
Sud
A
,
Thomsen
H
,
Law
PJ
, et al
.
Genome-wide association study of classical Hodgkin lymphoma identifies key regulators of disease susceptibility
.
Nat Commun
.
2017
;
8
(
1
):
1892
.
15.
Kushekhar
K
,
van den Berg
A
,
Nolte
I
,
Hepkema
B
,
Visser
L
,
Diepstra
A
.
Genetic associations in classical Hodgkin lymphoma: a systematic review and insights into susceptibility mechanisms
.
Cancer Epidemiol Biomarkers Prev
.
2014
;
23
(
12
):
2737
-
2747
.
16.
Rotunno
M
,
McMaster
ML
,
Boland
J
, et al
.
Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene
.
Haematologica
.
2016
;
101
(
7
):
853
-
860
.
17.
McMaster
ML
,
Sun
C
,
Landi
MT
, et al
.
Germline mutations in Protection of Telomeres 1 in two families with Hodgkin lymphoma
.
Br J Haematol
.
2018
;
181
(
3
):
372
-
377
.
18.
Bandapalli
OR
,
Paramasivam
N
,
Giangiobbe
S
, et al
.
Whole genome sequencing reveals DICER1 as a candidate predisposing gene in familial Hodgkin lymphoma
.
Int J Cancer
.
2018
;
143
(
8
):
2076
-
2078
.
19.
Srivastava
A
,
Giangiobbe
S
,
Kumar
A
, et al
.
Identification of familial Hodgkin lymphoma predisposing genes using whole genome sequencing
.
Front Bioeng Biotechnol
.
2020
;
8
:
179
.
20.
Ristolainen
H
,
Kilpivaara
O
,
Kamper
P
, et al
.
Identification of homozygous deletion in ACAN and other candidate variants in familial classical Hodgkin lymphoma by exome sequencing
.
Br J Haematol
.
2015
;
170
(
3
):
428
-
431
.
21.
Salipante
SJ
,
Mealiffe
ME
,
Wechsler
J
, et al
.
Mutations in a gene encoding a midbody kelch protein in familial and sporadic classical Hodgkin lymphoma lead to binucleated cells
.
Proc Natl Acad Sci U S A
.
2009
;
106
(
35
):
14920
-
14925
.
22.
Goldin
LR
,
McMaster
ML
,
Ter-Minassian
M
, et al
.
A genome screen of families at high risk for Hodgkin lymphoma: evidence for a susceptibility gene on chromosome 4
.
J Med Genet
.
2005
;
42
(
7
):
595
-
601
.
23.
Myers
J ON
,
Flerlage
J
,
Rashkin
R
, et al
.
FAMilial Variant Prioritizer (FAMVP): An annotation and prioritization pipeline for whole genome germline variants in family studies [abstract]. In: American Society of Human Genetics Annual Meeting
.
October 2020
.
24.
Pedersen
BS
,
Brown
JM
,
Dashnow
H
, et al
.
Effective variant filtering and expected candidate variant yield in studies of rare human disease
.
NPJ Genom Med
.
2021
;
6
(
1
):
60
.
25.
Wang
Y
,
Ottman
R
,
Rabinowitz
D
.
A method for estimating penetrance from families sampled for linkage analysis
.
Biometrics
.
2006
;
62
(
4
):
1081
-
1088
.
26.
Ioannidis
NM
,
Rothstein
JH
,
Pejaver
V
, et al
.
REVEL: an ensemble method for predicting the pathogenicity of rare missense variants
.
Am J Hum Genet
.
2016
;
99
(
4
):
877
-
885
.
27.
Rentzsch
P
,
Witten
D
,
Cooper
GM
,
Shendure
J
,
Kircher
M
.
CADD: predicting the deleteriousness of variants throughout the human genome
.
Nucleic Acids Res
.
2019
;
47
(
D1
):
D886
-
D894
.
28.
Koch
L
.
Exploring human genomic diversity with gnomAD
.
Nat Rev Genet
.
2020
;
21
(
8
):
448
.
29.
Liu
X
,
Wu
C
,
Li
C
,
Boerwinkle
E
.
dbNSFP v3.0: a one-stop database of functional predictions and annotations for human nonsynonymous and splice-site SNVs
.
Hum Mutat
.
2016
;
37
(
3
):
235
-
241
.
30.
Zhang
S
,
He
Y
,
Liu
H
, et al
.
regBase: whole genome base-wise aggregation and functional prediction for human non-coding regulatory variants
.
Nucleic Acids Res
.
2019
;
47
(
21
):
e134
.
31.
Wang
K
,
Li
M
,
Hakonarson
H
.
ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data
.
Nucleic Acids Res
.
2010
;
38
(
16
):
e164
.
32.
Jaganathan
K
,
Kyriazopoulou Panagiotopoulou
S
,
McRae
JF
, et al
.
Predicting splicing from primary sequence with deep learning
.
Cell
.
2019
;
176
(
3
):
535
-
548 e524
.
33.
Jian
X
,
Boerwinkle
E
,
Liu
X
.
In silico prediction of splice-altering single nucleotide variants in the human genome
.
Nucleic Acids Res
.
2014
;
42
(
22
):
13534
-
13544
.
34.
Kalia
SS
,
Adelman
K
,
Bale
SJ
, et al
.
Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics
.
Genet Med
.
2017
;
19
(
2
):
249
-
255
.
35.
Forbes
SA
,
Tang
G
,
Bindal
N
, et al
.
COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer
.
Nucleic Acids Res
.
2010
;
38
(
Database issue
):
D652
-
D657
.
36.
Robinson
DR
,
Wu
YM
,
Lonigro
RJ
, et al
.
Integrative clinical genomics of metastatic cancer
.
Nature
.
2017
;
548
(
7667
):
297
-
303
.
37.
Wang
Z
,
Wilson
CL
,
Easton
J
, et al
.
Genetic risk for subsequent neoplasms among long-term survivors of childhood cancer
.
J Clin Oncol
.
2018
;
36
(
20
):
2078
-
2087
.
38.
Rouillard
AD
,
Gundersen
GW
,
Fernandez
NF
, et al
.
The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins
.
Database (Oxford)
;
2016
.
39.
Cotterill
SJ
.
Home Page, Cancer Genetics Web
. Accessed 20 May 2022. http://www.cancer-genetics.org/index.htm.
40.
Sloan
CA
,
Chan
ET
,
Davidson
JM
, et al
.
ENCODE data at the ENCODE portal
.
Nucleic Acids Res
.
2016
;
44
(
D1
):
D726
-
D732
.
41.
Karolchik
D
,
Hinrichs
AS
,
Furey
TS
, et al
.
The UCSC Table Browser data retrieval tool
.
Nucleic Acids Res
.
2004
;
32
(
Database issue
):
D493
-
D496
.
42.
Grant
CE
,
Bailey
TL
,
Noble
WS
.
FIMO: scanning for occurrences of a given motif
.
Bioinformatics
.
2011
;
27
(
7
):
1017
-
1018
.
43.
Abecasis
GR
,
Cherny
SS
,
Cookson
WO
,
Cardon
LR
.
Merlin--rapid analysis of dense genetic maps using sparse gene flow trees
.
Nat Genet
.
2002
;
30
(
1
):
97
-
101
.
44.
. In:
Howlader
N NA
,
Krapcho
M
,
Miller
D
, eds.
SEER Cancer Statistics Review
.
1975-2018
https://seer.cancer.gov/csr/1975_2018/.
45.
Abyzov
A
,
Urban
AE
,
Snyder
M
,
Gerstein
M
.
CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing
.
Genome Res
.
2011
;
21
(
6
):
974
-
984
.
46.
Jeffares
DC
,
Jolly
C
,
Hoti
M
, et al
.
Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast
.
Nat Commun
.
2017
;
8
:
14061
.
47.
Geoffroy
V
,
Guignard
T
,
Kress
A
, et al
.
AnnotSV and knotAnnotSV: a web server for human structural variations annotations, ranking and analysis
.
Nucleic Acids Res
.
2021
;
49
(
W1
):
W21
-
W28
.
48.
Tavtigian
SV
,
Harrison
SM
,
Boucher
KM
,
Biesecker
LG
.
Fitting a naturally scaled point system to the ACMG/AMP variant classification guidelines
.
Hum Mutat
.
2020
;
41
(
10
):
1734
-
1737
.
49.
Guan
H
,
Xie
L
,
Wirth
T
,
Ushmorov
A
.
Repression of TCF3/E2A contributes to Hodgkin lymphomagenesis
.
Oncotarget
.
2016
;
7
(
24
):
36854
-
36864
.
50.
Li
Y
,
Brauer
PM
,
Singh
J
, et al
.
Targeted disruption of TCF12 reveals HEB as essential in human mesodermal specification and hematopoiesis
.
Stem Cell Rep
.
2017
;
9
(
3
):
779
-
795
.
51.
Bouderlique
T
,
Pena-Perez
L
,
Kharazi
S
, et al
.
The concerted action of E2-2 and HEB is critical for early lymphoid specification
.
Front Immunol
.
2019
;
10
:
455
.
52.
Chong
LC
,
Twa
DD
,
Mottok
A
, et al
.
Comprehensive characterization of programmed death ligand structural rearrangements in B-cell non-Hodgkin lymphomas
.
Blood
.
2016
;
128
(
9
):
1206
-
1213
.
53.
Loveday
C
,
Turnbull
C
,
Ramsay
E
, et al
.
Germline mutations in RAD51D confer susceptibility to ovarian cancer
.
Nat Genet
.
2011
;
43
(
9
):
879
-
882
.
54.
Holtick
U
,
Vockerodt
M
,
Pinkert
D
, et al
.
STAT3 is essential for Hodgkin lymphoma cell proliferation and is a target of tyrphostin AG17 which confers sensitization for apoptosis
.
Leukemia
.
2005
;
19
(
6
):
936
-
944
.
55.
Cornish
AJ
,
Hoang
PH
,
Dobbins
SE
, et al
.
Identification of recurrent noncoding mutations in B-cell lymphoma using capture Hi-C
.
Blood Adv
.
2019
;
3
(
1
):
21
-
32
.
56.
Cozen
W
,
Timofeeva
MN
,
Li
D
, et al
.
A meta-analysis of Hodgkin lymphoma reveals 19p13.3 TCF3 as a novel susceptibility locus
.
Nat Commun
.
2014
;
5
:
3856
.
57.
Ito
Y
,
Shibata-Watanabe
Y
,
Ushijima
Y
, et al
.
Oligonucleotide microarray analysis of gene expression profiles followed by real-time reverse-transcriptase polymerase chain reaction assay in chronic active Epstein-Barr virus infection
.
J Infect Dis
.
2008
;
197
(
5
):
663
-
666
.
58.
Lawrie
A
,
Han
S
,
Sud
A
, et al
.
Combined linkage and association analysis of classical Hodgkin lymphoma
.
Oncotarget
.
2018
;
9
(
29
):
20377
-
20385
.
59.
Zhang
L
,
Zhang
J
,
Lambert
Q
, et al
.
Interferon regulatory factor 7 is associated with Epstein-Barr virus-transformed central nervous system lymphoma and has oncogenic properties
.
J Virol
.
2004
;
78
(
23
):
12987
-
12995
.
60.
Cohen
JI
.
Epstein-Barr virus infection
.
N Engl J Med
.
2000
;
343
(
7
):
481
-
492
.
61.
Slager
SL
,
Achenbach
SJ
,
Asmann
YW
, et al
.
Mapping of the IRF8 gene identifies a 3′UTR variant associated with risk of chronic lymphocytic leukemia but not other common non-Hodgkin lymphoma subtypes
.
Cancer Epidemiol Biomarkers Prev
.
2013
;
22
(
3
):
461
-
466
.
62.
Shukla
V
,
Lu
R
.
IRF4 and IRF8: Governing the virtues of B Lymphocytes
.
Front Biol
.
2014
;
9
(
4
):
269
-
282
.
63.
Zhang
J
,
Lee
D
,
Dhiman
V
, et al
.
An integrative ENCODE resource for cancer genomics
.
Nat Commun
.
2020
;
11
(
1
):
3696
.
64.
Cobaleda
C
,
Jochum
W
,
Busslinger
M
.
Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors
.
Nature
.
2007
;
449
(
7161
):
473
-
477
.
65.
Marinaccio
C
,
Nico
B
,
Maiorano
E
,
Specchia
G
,
Ribatti
D
.
Insights in Hodgkin Lymphoma angiogenesis
.
Leuk Res
.
2014
;
38
(
8
):
857
-
861
.
66.
Suszynska
M
,
Ratajska
M
,
Kozlowski
P
.
BRIP1, RAD51C, and RAD51D mutations are associated with high susceptibility to ovarian cancer: mutation prevalence and precise risk estimates based on a pooled analysis of ∼30,000 cases
.
J Ovarian Res
.
2020
;
13
(
1
):
50
.
67.
Selmi
C
,
Leung
PS
,
Sherr
DH
, et al
.
Mechanisms of environmental influence on human autoimmunity: a National Institute of Environmental Health Sciences expert panel workshop
.
J Autoimmun
.
2012
;
39
(
4
):
272
-
284
.
68.
Ceribelli
A
,
Selmi
C
.
Epigenetic Methods and Twin Studies
.
Adv Exp Med Biol
.
2020
;
1253
:
95
-
104
.
69.
Wang
JHA
,
Hwang
A
,
Weisenberger
D
, et al
.
DNA methylation differences in twins discordant for adolescent/young adult Hodgkin lymphoma
.
Blood
.
2015
;
126
(
23
):
179
. Abstract 621.
This content is only available as a PDF.
You do not currently have access to this content.

Sign in via your Institution