• CLL LN metabolism characterization based on IBR-treated samples and in vitro stimulation shows glycolytic, TCA, and AA metabolic changes.

  • Inhibition of glutamine import attenuates microenvironment-induced resistance to venetoclax.

Altered metabolism is a hallmark of both cell division and cancer. Chronic lymphocytic leukemia (CLL) cells circulate between peripheral blood (PB) and lymph nodes (LNs), where they receive proliferative and prosurvival signals from surrounding cells. However, insight into the metabolism of LN CLL and how this may relate to therapeutic response is lacking. To obtain insight into CLL LN metabolism, we applied a 2-tiered strategy. First, we sampled PB from 8 patients at baseline and after 3-month ibrutinib (IBR) treatment, which forces egress of CLL cells from LNs. Second, we applied in vitro B-cell receptor (BCR) or CD40 stimulation to mimic the LN microenvironment and performed metabolomic and transcriptomic analyses. The combined analyses indicated prominent changes in purine, glucose, and glutamate metabolism occurring in the LNs. CD40 signaling mostly regulated amino acid metabolism, tricarboxylic acid cycle (TCA), and energy production. BCR signaling preferably engaged glucose and glycerol metabolism and several biosynthesis routes. Pathway analyses demonstrated opposite effects of in vitro stimulation vs IBR treatment. In agreement, the metabolic regulator MYC and its target genes were induced after BCR/CD40 stimulation and suppressed by IBR. Next, 13C fluxomics performed on CD40/BCR-stimulated cells confirmed a strong contribution of glutamine as fuel for the TCA cycle, whereas glucose was mainly converted into lactate and ribose-5-phosphate. Finally, inhibition of glutamine import with V9302 attenuated CD40/BCR-induced resistance to venetoclax. Together, these data provide insight into crucial metabolic changes driven by the CLL LN microenvironment. The prominent use of amino acids as fuel for the TCA cycle suggests new therapeutic vulnerabilities.

1.
Hanahan
D
,
Weinberg
RA
.
Hallmarks of cancer: the next generation
.
Cell.
2011
;
144
(
5
):
646
-
674
.
2.
Crabtree
HG
.
Observations on the carbohydrate metabolism of tumours
.
Biochem J.
1929
;
23
(
3
):
536
-
545
.
3.
Racker
E
.
Bioenergetics and the problem of tumor growth
.
Am Sci.
1972
;
60
(
1
):
56
-
63
.
4.
Flier
JS
,
Mueckler
MM
,
Usher
P
,
Lodish
HF
.
Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes
Science.
1987
;
235
(
4795
):
1492
-
1495
.
5.
Heiden
MGV
,
Cantley
LC
,
Thompson
CB
.
Understanding the Warburg effect: the metabolic requirements of cell proliferation
Science.
2009
;
324
(
5930
):
1029
-
1033
.
6.
Birnbaum
MJ
,
Haspel
HC
,
Rosen
OM
.
Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription
Science.
1987
;
235
(
4795
):
1495
-
1498
.
7.
Friedberg
JW
.
CLL microenvironment: macro important
.
Blood.
2011
;
117
(
2
):
377
-
378
.
8.
Burger
JA
.
The CLL cell microenvironment
.
Adv Exp Med Biol.
2013
;
792
:
25
-
45
.
9.
Choi
MY
,
Kashyap
MK
,
Kumar
D
.
The chronic lymphocytic leukemia microenvironment: Beyond the B-cell receptor
.
Best Pract Res Clin Haematol.
2016
;
29
(
1
):
40
-
53
.
10.
Calissano
C
,
Damle
RN
,
Marsilio
S
, et al
.
Intraclonal complexity in chronic lymphocytic leukemia: fractions enriched in recently born/divided and older/quiescent cells
.
Mol Med.
2011
;
17
(
11-12
):
1374
-
1382
.
11.
Kurtova
AV
,
Balakrishnan
K
,
Chen
R
, et al
.
Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance
.
Blood.
2009
;
114
(
20
):
4441
-
4450
.
12.
Burger
JA
,
Gandhi
V
.
The lymphatic tissue microenvironments in chronic lymphocytic leukemia: in vitro models and the significance of CD40-CD154 interactions
.
Blood.
2009
;
114
(
12
):
2560
-
2561, author reply 2561-2562
.
13.
Ghia
P
,
Strola
G
,
Granziero
L
, et al
.
Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22
.
Eur J Immunol.
2002
;
32
(
5
):
1403
-
1413
.
14.
Burger
JA
,
Tsukada
N
,
Burger
M
,
Zvaifler
NJ
,
Dell’Aquila
M
,
Kipps
TJ
.
Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1
.
Blood.
2000
;
96
(
8
):
2655
-
2663
.
15.
Panayiotidis
P
,
Jones
D
,
Ganeshaguru
K
,
Foroni
L
,
Hoffbrand
AV
.
Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro
.
Br J Haematol.
1996
;
92
(
1
):
97
-
103
.
16.
Haselager
M
,
Thijssen
R
,
West
C
, et al
.
Regulation of Bcl-XL by non-canonical NF-κB in the context of CD40-induced drug resistance in CLL
.
Cell Death Differ.
2021
;
28
(
5
):
1658
-
1668
.
17.
Jitschin
R
,
Hofmann
AD
,
Bruns
H
, et al
.
Mitochondrial metabolism contributes to oxidative stress and reveals therapeutic targets in chronic lymphocytic leukemia
.
Blood.
2014
;
123
(
17
):
2663
-
2672
.
18.
Vangapandu
HV
,
Ayres
ML
,
Bristow
CA
, et al
.
The stromal microenvironment modulates mitochondrial oxidative phosphorylation in chronic lymphocytic leukemia Cells
.
Neoplasia.
2017
;
19
(
10
):
762
-
771
.
19.
Secchiero
P
,
Voltan
R
,
Rimondi
E
, et al
.
The γ-secretase inhibitors enhance the anti-leukemic activity of ibrutinib in B-CLL cells
.
Oncotarget.
2017
;
8
(
35
):
59235
-
59245
.
20.
Zhang
W
,
Trachootham
D
,
Liu
J
, et al
.
Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia
.
Nat Cell Biol.
2012
;
14
(
3
):
276
-
286
.
21.
Jitschin
R
,
Braun
M
,
Qorraj
M
, et al
.
Stromal cell-mediated glycolytic switch in CLL cells involves Notch-c-Myc signaling
.
Blood.
2015
;
125
(
22
):
3432
-
3436
.
22.
Guièze
R
,
Liu
VM
,
Rosebrock
D
, et al
.
Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies
.
Cancer Cell.
2019
;
36
(
4
):
369
-
384.e13
.
23.
Hallek
M
.
Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment
.
Am J Hematol.
2019
;
94
(
11
):
1266
-
1287
.
24.
Roberts
AW
,
Davids
MS
,
Pagel
JM
, et al
.
Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia
.
N Engl J Med.
2016
;
374
(
4
):
311
-
322
.
25.
Seymour
JF
,
Kipps
TJ
,
Eichhorst
B
, et al
.
Venetoclax-rituximab in relapsed or refractory chronic lymphocytic leukemia
.
N Engl J Med.
2018
;
378
(
12
):
1107
-
1120
.
26.
Fischer
K
,
Al-Sawaf
O
,
Bahlo
J
, et al
.
Venetoclax and obinutuzumab in patients with CLL and coexisting conditions
.
N Engl J Med.
2019
;
380
(
23
):
2225
-
2236
.
27.
de Rooij
MFM
,
Kuil
A
,
Geest
CR
, et al
.
The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia
.
Blood.
2012
;
119
(
11
):
2590
-
2594
.
28.
Byrd
JC
,
Furman
RR
,
Coutre
SE
, et al
.
Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia
[published correction appears in N Engl J Med. 2014;370(8):786].
N Engl J Med.
2013
;
369
(
1
):
32
-
42
.
29.
Woyach
JA
,
Smucker
K
,
Smith
LL
, et al
.
Prolonged lymphocytosis during ibrutinib therapy is associated with distinct molecular characteristics and does not indicate a suboptimal response to therapy
.
Blood.
2014
;
123
(
12
):
1810
-
1817
.
30.
Landau
DA
,
Sun
C
,
Rosebrock
D
, et al
.
The evolutionary landscape of chronic lymphocytic leukemia treated with ibrutinib targeted therapy
.
Nat Commun.
2017
;
8
(
1
):
2185
.
31.
Woyach
JA
,
Furman
RR
,
Liu
T-M
, et al
.
Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib
.
N Engl J Med.
2014
;
370
(
24
):
2286
-
2294
.
32.
Haselager
MV
,
Kielbassa
K
,
Ter Burg
J
, et al
.
Changes in Bcl-2 members after ibrutinib or venetoclax uncover functional hierarchy in determining resistance to venetoclax in CLL
.
Blood.
2020
;
136
(
25
):
2918
-
2926
.
33.
Purroy
N
,
Abrisqueta
P
,
Carabia
J
, et al
.
Co-culture of primary CLL cells with bone marrow mesenchymal cells, CD40 ligand and CpG ODN promotes proliferation of chemoresistant CLL cells phenotypically comparable to those proliferating in vivo
.
Oncotarget.
2015
;
6
(
10
):
7632
-
7643
.
34.
Kitada
S
,
Zapata
JM
,
Andreeff
M
,
Reed
JC
.
Bryostatin and CD40-ligand enhance apoptosis resistance and induce expression of cell survival genes in B-cell chronic lymphocytic leukaemia
.
Br J Haematol.
1999
;
106
(
4
):
995
-
1004
.
35.
Hallaert
DYH
,
Jaspers
A
,
van Noesel
CJ
,
van Oers
MH
,
Kater
AP
,
Eldering
E
.
c-Abl kinase inhibitors overcome CD40-mediated drug resistance in CLL: implications for therapeutic targeting of chemoresistant niches
.
Blood.
2008
;
112
(
13
):
5141
-
5149
.
36.
O’Neil
RG
,
Wu
L
,
Mullani
N
.
Uptake of a fluorescent deoxyglucose analog (2-NBDG) in tumor cells
.
Mol Imaging Biol.
2005
;
7
(
6
):
388
-
392
.
37.
Yoshioka
K
,
Takahashi
H
,
Homma
T
, et al
.
A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of 
Escherichia coli.
Biochim Biophys Acta.
1996
;
1289
(
1
):
5
-
9
.
38.
Agnello
M
,
Morici
G
,
Rinaldi
AM
.
A method for measuring mitochondrial mass and activity
.
Cytotechnology.
2008
;
56
(
3
):
145
-
149
.
39.
Spaargaren
M
,
de Rooij
MFM
,
Kater
AP
,
Eldering
E
.
BTK inhibitors in chronic lymphocytic leukemia: a glimpse to the future
.
Oncogene.
2015
;
34
(
19
):
2426
-
2436
.
40.
Drennan
S
,
Chiodin
G
,
D’Avola
A
, et al
.
Ibrutinib therapy releases leukemic surface IgM from antigen drive in chronic lymphocytic leukemia patients
.
Clin Cancer Res.
2019
;
25
(
8
):
2503
-
2512
.
41.
Brennan
L
,
Gibbons
H
.
Sex matters: a focus on the impact of biological sex on metabolomic profiles and dietary interventions
.
Proc Nutr Soc.
2020
;
79
(
2
):
205
-
209
.
42.
Rescigno
T
,
Micolucci
L
,
Tecce
MF
,
Capasso
A
.
Bioactive nutrients and nutrigenomics in age-related diseases
.
Molecules.
2017
;
22
(
1
):
105
.
43.
Guarini
A
,
Chiaretti
S
,
Tavolaro
S
, et al
.
BCR ligation induced by IgM stimulation results in gene expression and functional changes only in IgV H unmutated chronic lymphocytic leukemia (CLL) cells
.
Blood.
2008
;
112
(
3
):
782
-
792
.
44.
Herishanu
Y
,
Pérez-Galán
P
,
Liu
D
, et al
.
The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia
.
Blood.
2011
;
117
(
2
):
563
-
574
.
45.
Pedley
AM
,
Benkovic
SJ
.
A new view into the regulation of purine metabolism: the purinosome
.
Trends Biochem Sci.
2017
;
42
(
2
):
141
-
154
.
46.
Burnichon
N
,
Brière
JJ
,
Libé
R
, et al
.
SDHA is a tumor suppressor gene causing paraganglioma
.
Hum Mol Genet.
2010
;
19
(
15
):
3011
-
3020
.
47.
Hindupur
SK
,
Colombi
M
,
Fuhs
SR
, et al
.
The protein histidine phosphatase LHPP is a tumour suppressor
.
Nature.
2018
;
555
(
7698
):
678
-
682
.
48.
Stine
ZE
,
Walton
ZE
,
Altman
BJ
,
Hsieh
AL
,
Dang
CV
.
MYC, metabolism, and cancer
.
Cancer Discov.
2015
;
5
(
10
):
1024
-
1039
.
49.
Bojarczuk
K
,
Sasi
BK
,
Gobessi
S
, et al
.
BCR signaling inhibitors differ in their ability to overcome Mcl-1-mediated resistance of CLL B cells to ABT-199
.
Blood.
2016
;
127
(
25
):
3192
-
3201
.
50.
Kater
AP
,
Evers
LM
,
Remmerswaal
EBM
, et al
.
CD40 stimulation of B-cell chronic lymphocytic leukaemia cells enhances the anti-apoptotic profile, but also Bid expression and cells remain susceptible to autologous cytotoxic T-lymphocyte attack
.
Br J Haematol.
2004
;
127
(
4
):
404
-
415
.
51.
Smallwood
DT
,
Apollonio
B
,
Willimott
S
, et al
.
Extracellular vesicles released by CD40/IL-4-stimulated CLL cells confer altered functional properties to CD4+ T cells
.
Blood.
2016
;
128
(
4
):
542
-
552
.
52.
Luo
Z
,
Xu
J
,
Sun
J
, et al
.
Co-delivery of 2-deoxyglucose and a glutamine metabolism inhibitor V9302 via a prodrug micellar formulation for synergistic targeting of metabolism in cancer
.
Acta Biomater.
2020
;
105
:
239
-
252
.
53.
Kielbassa
K
,
Haselager
M
,
Bax
D
, et al
.
Ibrutinib treatment in CLL interrupts CD40 signaling capacity and sensitizes CLL cells to venetoclax
.
Blood
.
2021
;
138
(
Suppl 1
):
1545
-
1545
.
54.
Reinfeld
BI
,
Madden
MZ
,
Wolf
MM
, et al
.
Cell-programmed nutrient partitioning in the tumour microenvironment
.
Nature.
2021
;
593
(
7858
):
282
-
288
.
55.
Altman
BJ
,
Stine
ZE
,
Dang
CV
.
From Krebs to clinic: glutamine metabolism to cancer therapy
.
Nat Rev Cancer.
2016
;
16
(
10
):
619
-
634
.
56.
Wise
DR
,
Thompson
CB
.
Glutamine addiction: a new therapeutic target in cancer
.
Trends Biochem Sci.
2010
;
35
(
8
):
427
-
433
.
57.
Bröer
S
,
Bröer
A
.
Amino acid homeostasis and signalling in mammalian cells and organisms
.
Biochem J.
2017
;
474
(
12
):
1935
-
1963
.
58.
Al-Zebeeby
A
,
Vogler
M
,
Milani
M
, et al
.
Targeting intermediary metabolism enhances the efficacy of BH3 mimetic therapy in hematologic malignancies
.
Haematologica.
2019
;
104
(
5
):
1016
-
1025
.
59.
Schulte
ML
,
Fu
A
,
Zhao
P
, et al
.
Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models
.
Nat Med.
2018
;
24
(
2
):
194
-
202
.
60.
Liu
Y
,
Ge
X
,
Pang
J
, et al
.
Restricting glutamine uptake enhances NSCLC sensitivity to third-generation EGFR-TKI almonertinib
.
Front Pharmacol.
2021
;
12
:
671328
.
61.
Yoo
HC
,
Park
SJ
,
Nam
M
, et al
.
A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells
.
Cell Metab.
2020
;
31
(
2
):
267
-
283.e12
.
You do not currently have access to this content.

Sign in via your Institution