• We assessed tumor-intrinsic factors driving clinical failures of anti-CD19 CAR T cells through whole-genome sequencing.

  • Distinct mutational processes, complex structural variants, and deletion of RHOA associated with CAR-19 resistance and early progression.

CD19-directed chimeric antigen receptor (CAR-19) T cells are groundbreaking immunotherapies approved for use against large B-cell lymphomas. Although host inflammatory and tumor microenvironmental markers associate with efficacy and resistance, the tumor-intrinsic alterations underlying these phenomena remain undefined. CD19 mutations associate with resistance but are uncommon, and most patients with relapsed disease retain expression of the wild-type receptor, implicating other genomic mechanisms. We therefore leveraged the comprehensive resolution of whole-genome sequencing to assess 51 tumor samples from 49 patients with CAR-19–treated large B-cell lymphoma. We found that the pretreatment presence of complex structural variants, APOBEC mutational signatures, and genomic damage from reactive oxygen species predict CAR-19 resistance. In addition, the recurrent 3p21.31 chromosomal deletion containing the RHOA tumor suppressor was strongly enriched in patients for whom CAR T-cell therapy failed. Pretreatment reduced expression or monoallelic loss of CD19 did not affect responses, suggesting CAR-19 therapy success and resistance are related to multiple mechanisms. Our study showed that tumor-intrinsic genomic alterations are key among the complex interplay of factors that underlie CAR-19 efficacy and resistance for large B-cell lymphomas.

1.
Locke
FL
,
Ghobadi
A
,
Jacobson
CA
, et al
.
Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial
.
Lancet Oncol.
2019
;
20
(
1
):
31
-
42
.
2.
Neelapu
SS
,
Locke
FL
,
Bartlett
NL
, et al
.
Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma
.
N Engl J Med.
2017
;
377
(
26
):
2531
-
2544
.
3.
Nastoupil
LJ
,
Jain
MD
,
Feng
L
, et al
.
Standard-of-care axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma: results from the US Lymphoma CAR T Consortium
.
J Clin Oncol.
2020
;
38
(
27
):
3119
-
3128
.
4.
Schuster
SJ
,
Svoboda
J
,
Chong
EA
, et al
.
Chimeric antigen receptor T cells in refractory B-cell lymphomas
.
N Engl J Med.
2017
;
377
(
26
):
2545
-
2554
.
5.
Schuster
SJ
,
Bishop
MR
,
Tam
CS
, et al;
JULIET Investigators
.
Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma
.
N Engl J Med.
2019
;
380
(
1
):
45
-
56
.
6.
Dean
EA
,
Mhaskar
RS
,
Lu
H
, et al
.
High metabolic tumor volume is associated with decreased efficacy of axicabtagene ciloleucel in large B-cell lymphoma
.
Blood Adv.
2020
;
4
(
14
):
3268
-
3276
.
7.
Vercellino
L
,
Di Blasi
R
,
Kanoun
S
, et al
.
Predictive factors of early progression after CAR T-cell therapy in relapsed/refractory diffuse large B-cell lymphoma
.
Blood Adv.
2020
;
4
(
22
):
5607
-
5615
.
8.
Jain
MD
,
Zhao
H
,
Wang
X
, et al
.
Tumor interferon signaling and suppressive myeloid cells associate with CAR T cell failure in large B cell lymphoma
.
Blood.
2021
;
137
(
19
):
2621
-
2633
.
9.
Deng
Q
,
Han
G
,
Puebla-Osorio
N
, et al
.
Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas
.
Nat Med.
2020
;
26
(
12
):
1878
-
1887
.
10.
Jacobson
CA
,
Hunter
BD
,
Redd
R
, et al
.
Axicabtagene ciloleucel in the non-trial setting: outcomes and correlates of response, resistance, and toxicity
J Clin Oncol.
2020
;
38
(
27
);
3095
-
3106
.
11.
Shouval
R
,
Alarcon Tomas
A
,
Fein
JA
, et al
.
Impact of TP53 genomic alterations in large B-cell lymphoma treated with CD19-chimeric antigen receptor T-cell therapy
.
J Clin Oncol.
2022
;
40
(
4
):
369
-
381
.
12.
Hill
B
,
Roth
CJ
,
Kositsky
R
, et al
.
Impact of molecular features of diffuse large B-cell lymphoma on treatment outcomes with anti-CD19 chimeric antigen receptor (CAR). T-cell therapy [abstract]
.
Blood.
2021
;
138
(
suppl 1
). Abstract 165.
13.
Zhang
Z
,
Chen
X
,
Tian
Y
, et al
.
Point mutation in CD19 facilitates immune escape of B cell lymphoma from CAR-T cell therapy
.
J Immunother Cancer.
2020
;
8
(
2
):
e01150
.
14.
Chong
EA
,
Ruella
M
,
Schuster
SJ
;
Lymphoma Program Investigators at the University of Pennsylvania
.
Five-year outcomes for refractory B-cell lymphomas with CAR T-cell therapy
.
N Engl J Med.
2021
;
384
(
7
):
673
-
674
.
15.
Plaks
V
,
Rossi
JM
,
Chou
J
, et al
.
CD19 target evasion as a mechanism of relapse in large B-cell lymphoma treated with axicabtagene ciloleucel
.
Blood.
2021
;
138
(
12
):
1081
-
1085
.
16.
Munshi
NC
,
Anderson
LD
Jr
,
Shah
N
, et al
.
Idecabtagene vicleucel in relapsed and refractory multiple myeloma
.
N Engl J Med.
2021
;
384
(
8
):
705
-
716
.
17.
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium
.
Pan-cancer analysis of whole genomes
.
Nature.
2020
;
578
(
7793
):
82
-
93
.
18.
Martincorena
I
,
Raine
KM
,
Gerstung
M
, et al
.
Universal patterns of selection in cancer and somatic tissues
.
Cell.
2017
;
171
(
5
):
1029
-
1041.e21
.
19.
Arthur
SE
,
Jiang
A
,
Grande
BM
, et al
.
Genome-wide discovery of somatic regulatory variants in diffuse large B-cell lymphoma
.
Nat Commun.
2018
;
9
(
1
):
4001
.
20.
Alexandrov
LB
,
Kim
J
,
Haradhvala
NJ
, et al;
PCAWG Mutational Signatures Working Group
;
PCAWG Consortium
.
The repertoire of mutational signatures in human cancer
.
Nature.
2020
;
578
(
7793
):
94
-
101
.
21.
Rustad
EH
,
Yellapantula
V
,
Leongamornlert
D
, et al
.
Timing the initiation of multiple myeloma
.
Nat Commun.
2020
;
11
(
1
):
1917
.
22.
Rustad
EH
,
Nadeu
F
,
Angelopoulos
N
, et al
.
mmsig: a fitting approach to accurately identify somatic mutational signatures in hematological malignancies
.
Commun Biol.
2021
;
4
(
1
):
424
.
23.
Li
Y
,
Roberts
ND
,
Wala
JA
, et al;
PCAWG Structural Variation Working Group
;
PCAWG Consortium
.
Patterns of somatic structural variation in human cancer genomes
.
Nature.
2020
;
578
(
7793
):
112
-
121
.
24.
Rustad
EH
,
Yellapantula
VD
,
Glodzik
D
, et al
.
Revealing the impact of structural variants in multiple myeloma
.
Blood Cancer Discov.
2020
;
1
(
3
):
258
-
273
.
25.
Maura
F
,
Bolli
N
,
Angelopoulos
N
, et al
.
Genomic landscape and chronological reconstruction of driver events in multiple myeloma
.
Nat Commun.
2019
;
10
(
1
):
3835
.
26.
Maciejowski
J
,
Chatzipli
A
,
Dananberg
A
, et al
.
APOBEC3-dependent kataegis and TREX1-driven chromothripsis during telomere crisis
.
Nat Genet.
2020
;
52
(
9
):
884
-
890
.
27.
Chapuy
B
,
Stewart
C
,
Dunford
AJ
, et al
.
Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes
.
Nat Med.
2018
;
24
(
5
):
679
-
690
.
28.
Wright
GW
,
Huang
DW
,
Phelan
JD
, et al
.
A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications
.
Cancer Cell.
2020
;
37
(
4
):
551
-
568.e14
.
29.
Abramson
JS
,
Palomba
ML
,
Gordon
LI
, et al
.
Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study
.
Lancet.
2020
;
396
(
10254
):
839
-
852
.
30.
Rushton
CK
,
Arthur
SE
,
Alcaide
M
, et al
.
Genetic and evolutionary patterns of treatment resistance in relapsed B-cell lymphoma
.
Blood Adv.
2020
;
4
(
13
):
2886
-
2898
.
31.
Majzner
RG
,
Mackall
CL
.
Tumor antigen escape from CAR T-cell therapy
.
Cancer Discov.
2018
;
8
(
10
):
1219
-
1226
.
32.
Yu
H
,
Sotillo
E
,
Harrington
C
, et al
.
Repeated loss of target surface antigen after immunotherapy in primary mediastinal large B cell lymphoma
.
Am J Hematol.
2017
;
92
(
1
):
E11
-
E13
.
33.
Alizadeh
D
,
Wong
RA
,
Gholamin
S
, et al
.
IFNγ is critical for CAR T cell-mediated myeloid activation and induction of endogenous immunity
.
Cancer Discov.
2021
;
11
(
9
):
2248
-
2265
.
34.
Maura
F
,
Weinhold
N
,
Diamond
B
, et al
.
The mutagenic impact of melphalan in multiple myeloma
.
Leukemia.
2021
;
35
(
8
):
2145
-
2150
.
35.
Maura
F
,
Boyle
EM
,
Rustad
EH
, et al
.
Chromothripsis as a pathogenic driver of multiple myeloma
.
Semin Cell Dev Biol.
2022
;
123
:
115
-
123
.
36.
Landau
HJ
,
Yellapantula
V
,
Diamond
BT
, et al
.
Accelerated single cell seeding in relapsed multiple myeloma
.
Nat Commun.
2020
;
11
(
1
):
3617
.
37.
Dentro
SC
,
Leshchiner
I
,
Haase
K
, et al;
PCAWG Evolution and Heterogeneity Working Group and the PCAWG Consortium
.
Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes
.
Cell.
2021
;
184
(
8
):
2239
-
2254.e39
.
38.
McGranahan
N
,
Rosenthal
R
,
Hiley
CT
, et al;
TRACERx Consortium
.
Allele-specific HLA loss and immune escape in lung cancer evolution
.
Cell.
2017
;
171
(
6
):
1259
-
1271.e11
.
39.
Wagener
R
,
Alexandrov
LB
,
Montesinos-Rongen
M
, et al
.
Analysis of mutational signatures in exomes from B-cell lymphoma cell lines suggest APOBEC3 family members to be involved in the pathogenesis of primary effusion lymphoma
.
Leukemia.
2015
;
29
(
7
):
1612
-
1615
.
40.
Mermel
CH
,
Schumacher
SE
,
Hill
B
,
Meyerson
ML
,
Beroukhim
R
,
Getz
G
.
GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers
.
Genome Biol.
2011
;
12
(
4
):
R41
.
41.
Jiang
X
,
Lu
X
,
McNamara
G
, et al
.
HGAL, a germinal center specific protein, decreases lymphoma cell motility by modulation of the RhoA signaling pathway
.
Blood.
2010
;
116
(
24
):
5217
-
5227
.
42.
Muppidi
JR
,
Schmitz
R
,
Green
JA
, et al
.
Loss of signalling via Gα13 in germinal centre B-cell-derived lymphoma
.
Nature.
2014
;
516
(
7530
):
254
-
258
.
43.
Hadi
K
,
Yao
X
,
Behr
JM
, et al
.
Distinct classes of complex structural variation uncovered across thousands of cancer genome graphs
.
Cell.
2020
;
183
(
1
):
197
-
210.e32
.
44.
Cortés-Ciriano
I
,
Lee
JJ-K
,
Xi
R
, et al;
PCAWG Structural Variation Working Group
;
PCAWG Consortium
.
Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing
.
Nat Genet.
2020
;
52
(
3
):
331
-
341
.
45.
Nadeu
F
,
Mas-de-Les-Valls
R
,
Navarro
A
, et al
.
IgCaller for reconstructing immunoglobulin gene rearrangements and oncogenic translocations from whole-genome sequencing in lymphoid neoplasms
.
Nat Commun.
2020
;
11
(
1
):
3390
.
46.
Collinge
B
,
Ben-Neriah
S
,
Chong
L
, et al
.
The impact of MYC and BCL2 structural variants in tumors of DLBCL morphology and mechanisms of false-negative MYC IHC
.
Blood.
2021
;
137
(
16
):
2196
-
2208
.
47.
Green
TM
,
Young
KH
,
Visco
C
, et al
.
Immunohistochemical double-hit score is a strong predictor of outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone
.
J Clin Oncol.
2012
;
30
(
28
):
3460
-
3467
.
48.
Locke
FL
,
Miklos
DB
,
Jacobson
CA
, et al;
All ZUMA-7 Investigators and Contributing Kite Members
.
Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma
.
N Engl J Med.
2022
;
386
(
7
):
640
-
654
.
49.
Salles
G
,
Duell
J
,
González Barca
E
, et al
.
Tafasitamab plus lenalidomide in relapsed or refractory diffuse large B-cell lymphoma (L-MIND): a multicentre, prospective, single-arm, phase 2 study
.
Lancet Oncol.
2020
;
21
(
7
):
978
-
988
.
50.
Phillips
TJ
,
Olszewski
AJ
,
Munoz
J
, et al
.
Mosunetuzumab, a novel CD20/CD3 bispecific antibody, in combination with CHOP confers high response rates in patients with diffuse large B-cell lymphoma [abstract]
.
Blood.
2020
;
136
(
suppl 1
):
37
-
38
.
51.
Caimi
PF
,
Ai
W
,
Alderuccio
JP
, et al
.
Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): a multicentre, open-label, single-arm, phase 2 trial
.
Lancet Oncol.
2021
;
22
(
6
):
790
-
800
.
52.
Tilly
H
,
Morschhauser
F
,
Bartlett
NL
, et al
.
Polatuzumab vedotin in combination with immunochemotherapy in patients with previously untreated diffuse large B-cell lymphoma: an open-label, non-randomised, phase 1b-2 study
.
Lancet Oncol.
2019
;
20
(
7
):
998
-
1010
.
53.
Sotillo
E
,
Barrett
DM
,
Black
KL
, et al
.
Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy
.
Cancer Discov.
2015
;
5
(
12
):
1282
-
1295
.
54.
Chen
P-H
,
Lipschitz
M
,
Weirather
JL
, et al
.
Activation of CAR and non-CAR T cells within the tumor microenvironment following CAR T cell therapy
.
JCI Insight.
2020
;
5
(
12
):
134612
.
55.
Upadhyay
R
,
Boiarsky
JA
,
Pantsulaia
G
, et al
.
A critical role for Fas-mediated off-target tumor killing in T-cell immunotherapy
.
Cancer Discov.
2021
;
11
(
3
):
599
-
613
.
56.
Sanmamed
MF
,
Nie
X
,
Desai
SS
, et al
.
A burned-out CD8+ T-cell subset expands in the tumor microenvironment and curbs cancer immunotherapy
.
Cancer Discov.
2021
;
11
(
7
):
1700
-
1715
.
57.
Maura
F
,
Petljak
M
,
Lionetti
M
, et al
.
Biological and prognostic impact of APOBEC-induced mutations in the spectrum of plasma cell dyscrasias and multiple myeloma cell lines
.
Leukemia.
2018
;
32
(
4
):
1044
-
1048
.
58.
Walker
BA
,
Wardell
CP
,
Murison
A
, et al
.
APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma
.
Nat Commun.
2015
;
6
(
1
):
6997
.
59.
Swanton
C
,
McGranahan
N
,
Starrett
GJ
,
Harris
RS
.
APOBEC enzymes: mutagenic fuel for cancer evolution and heterogeneity
.
Cancer Discov.
2015
;
5
(
7
):
704
-
712
.
You do not currently have access to this content.

Sign in via your Institution