• CD19.22.BBζ CAR T cells were well tolerated and effective in pediatric B-ALL, but persistence and CD22 targeting were limited.

  • A novel bicistronic CD19.28ζ/CD22.BBζ CAR T-cell enhanced dual-targeting efficacy and cytokine production in preclinical models.

Remission durability following single-antigen targeted chimeric antigen receptor (CAR) T-cells is limited by antigen modulation, which may be overcome with combinatorial targeting. Building upon our experiences targeting CD19 and CD22 in B-cell acute lymphoblastic leukemia (B-ALL), we report on our phase 1 dose-escalation study of a novel murine stem cell virus (MSCV)-CD19/CD22-4-1BB bivalent CAR T-cell (CD19.22.BBζ) for children and young adults (CAYA) with B-cell malignancies. Primary objectives included toxicity and dose finding. Secondary objectives included response rates and relapse-free survival (RFS). Biologic correlatives included laboratory investigations, CAR T-cell expansion and cytokine profiling. Twenty patients, ages 5.4 to 34.6 years, with B-ALL received CD19.22.BBζ. The complete response (CR) rate was 60% (12 of 20) in the full cohort and 71.4% (10 of 14) in CAR-naïve patients. Ten (50%) developed cytokine release syndrome (CRS), with 3 (15%) having ≥ grade 3 CRS and only 1 experiencing neurotoxicity (grade 3). The 6- and 12-month RFS in those achieving CR was 80.8% (95% confidence interval [CI]: 42.4%-94.9%) and 57.7% (95% CI: 22.1%-81.9%), respectively. Limited CAR T-cell expansion and persistence of MSCV-CD19.22.BBζ compared with EF1α-CD22.BBζ prompted laboratory investigations comparing EF1α vs MSCV promoters, which did not reveal major differences. Limited CD22 targeting with CD19.22.BBζ, as evaluated by ex vivo cytokine secretion and leukemia eradication in humanized mice, led to development of a novel bicistronic CD19.28ζ/CD22.BBζ construct with enhanced cytokine production against CD22. With demonstrated safety and efficacy of CD19.22.BBζ in a heavily pretreated CAYA B-ALL cohort, further optimization of combinatorial antigen targeting serves to overcome identified limitations (www.clinicaltrials.gov #NCT03448393).

1.
Maude
SL
,
Laetsch
TW
,
Buechner
J
, et al
.
Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia
.
N Engl J Med.
2018
;
378
(
5
):
439
-
448
.
2.
Gardner
RA
,
Ceppi
F
,
Rivers
J
, et al
.
Preemptive mitigation of CD19 CAR T-cell cytokine release syndrome without attenuation of antileukemic efficacy
.
Blood.
2019
;
134
(
24
):
2149
-
2158
.
3.
Gardner
RA
,
Finney
O
,
Annesley
C
, et al
.
Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults
.
Blood.
2017
;
129
(
25
):
3322
-
3331
.
4.
Lee
DW
,
Kochenderfer
JN
,
Stetler-Stevenson
M
, et al
.
T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial
.
Lancet.
2015
;
385
(
9967
):
517
-
528
.
5.
Shah
NN
,
Lee
DW
,
Yates
B
, et al
.
Long-term follow-up of CD19-CAR T-cell therapy in children and young adults with B-ALL
.
J Clin Oncol.
2021
;
39
(
15
):
1650
-
1659
.
6.
Leahy
AB
,
Newman
H
,
Li
Y
, et al
.
CD19-targeted chimeric antigen receptor T-cell therapy for CNS relapsed or refractory acute lymphocytic leukaemia: a post-hoc analysis of pooled data from five clinical trials
.
Lancet Haematol.
2021
;
8
(
10
):
e711
-
e722
.
7.
Myers
RM
,
Li
Y
,
Barz Leahy
A
, et al
.
Humanized CD19-targeted chimeric antigen receptor (CAR) T cells in CAR-naive and CAR-exposed children and young adults with relapsed or refractory acute lymphoblastic leukemia
.
J Clin Oncol.
2021
;
39
(
27
):
3044
-
3055
.
8.
Shah
BD
,
Ghobadi
A
,
Oluwole
OO
, et al
.
KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study
.
Lancet.
2021
;
398
(
10299
):
491
-
502
.
9.
Majzner
RG
,
Mackall
CL
.
Tumor antigen escape from CAR T-cell therapy
.
Cancer Discov.
2018
;
8
(
10
):
1219
-
1226
.
10.
Fry
TJ
,
Shah
NN
,
Orentas
RJ
, et al
.
CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy
.
Nat Med.
2018
;
24
(
1
):
20
-
28
.
11.
Shah
NN
,
Highfill
SL
,
Shalabi
H
, et al
.
CD4/CD8 T-cell selection affects chimeric antigen receptor (CAR) T-cell potency and toxicity: updated results from a phase I anti-CD22 CAR T-cell trial
.
J Clin Oncol.
2020
;
38
(
17
):
1938
-
1950
.
12.
Qin
H
,
Ramakrishna
S
,
Nguyen
S
, et al
.
Preclinical development of bivalent chimeric antigen receptors targeting both CD19 and CD22
.
Mol Ther Oncolytics.
2018
;
11
:
127
-
137
.
13.
Grada
Z
,
Hegde
M
,
Byrd
T
, et al
.
TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy
.
Mol Ther Nucleic Acids.
2013
;
2
:
e105
.
14.
Fousek
K
,
Watanabe
J
,
Joseph
SK
, et al
.
CAR T-cells that target acute B-lineage leukemia irrespective of CD19 expression
.
Leukemia.
2021
;
35
(
1
):
75
-
89
.
15.
Bielamowicz
K
,
Fousek
K
,
Byrd
TT
, et al
.
Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma
.
Neuro-oncol.
2018
;
20
(
4
):
506
-
518
.
16.
Hegde
M
,
Mukherjee
M
,
Grada
Z
, et al
.
Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape
.
J Clin Invest.
2016
;
126
(
8
):
3036
-
3052
.
17.
Shah
NN
.
The one-two punch (of CAR T cells)
.
Blood.
2020
;
135
(
5
):
303
-
304
.
18.
Pan
J
,
Zuo
S
,
Deng
B
, et al
.
Sequential CD19-22 CAR T therapy induces sustained remission in children with r/r B-ALL
.
Blood.
2020
;
135
(
5
):
387
-
391
.
19.
Gardner
RA
,
Annesley
C
,
Wilson
A
, et al
.
Efficacy of SCRI-CAR19x22 T cell product in B-ALL and persistence of anti-CD22 activity
.
J Clin Oncol.
2020
;
38
(
15 suppl
):
3035
-
3035
.
20.
Annesley
C
,
Summers
C
,
Pulsipher
MA
, et al
.
SCRI-CAR19x22v2 T cell product demonstrates bispecific activity in B-ALL
.
Blood.
2021
;
138
(
suppl 1
):
470
.
21.
Long
AH
,
Haso
WM
,
Shern
JF
, et al
.
4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors
.
Nat Med.
2015
;
21
(
6
):
581
-
590
.
22.
Balduzzi
A
,
Valsecchi
MG
,
Uderzo
C
, et al
.
Chemotherapy versus allogeneic transplantation for very-high-risk childhood acute lymphoblastic leukaemia in first complete remission: comparison by genetic randomisation in an international prospective study
.
Lancet.
2005
;
366
(
9486
):
635
-
642
.
23.
Srivastava
SK
,
Panch
SR
,
Jin
J
, et al
.
Abbreviated T-cell activation on the automated clinimacs prodigy device enhances bispecific CD19/22 chimeric antigen receptor T-cell viability and fold expansion, reducing total culture duration
.
Blood.
2018
;
132
(
suppl 1
):
4551
.
24.
Holland
EM
,
Yates
B
,
Ling
A
, et al
.
Characterization of extramedullary disease in B-ALL and response to CAR T-cell therapy
.
Blood Adv.
2022
;
6
(
7
):
2167
2182
.
25.
Lee
DW
,
Santomasso
BD
,
Locke
FL
, et al
.
ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells
.
Biol Blood Marrow Transplant.
2019
;
25
(
4
):
625
-
638
.
26.
Shalabi
H
,
Wolters
PL
,
Martin
S
, et al
.
Systematic evaluation of neurotoxicity in children and young adults undergoing CD22 chimeric antigen receptor T-cell therapy
.
J Immunother.
2018
;
41
(
7
):
350
-
358
.
27.
Shalabi
H
,
Martin
S
,
Yates
B
, et al
.
Neurotoxicity following CD19/CD28ζ CAR T-cells in children and young adults with B-cell malignancies
.
Neuro-oncol.
2022
;
noac034
.
28.
Lee
DW
,
Kochenderfer
JN
,
Stetler-Stevenson
M
, et al
.
T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial
.
Lancet.
2015
;
385
(
9967
):
517
-
528
.
29.
Achar
SR
,
Bourassa
FXP
,
Rademaker
TJ
, et al
.
Universal antigen encoding of T cell activation from high-dimensional cytokine dynamics
.
Science.
2022
;
376
(
6595
):
880
-
884
.
30.
Qin
H
,
Nguyen
SM
,
Ramakrishna
S
, et al
.
Novel CD19/CD22 bicistronic chimeric antigen receptors outperform single or bivalent cars in eradicating CD19+CD22+, CD19-, and CD22- pre-B leukemia
.
Blood.
2017
;
130
(
suppl 1
):
810
.
31.
Lichtenstein
DA
,
Schischlik
F
,
Shao
L
, et al
.
Characterization of HLH-like manifestations as a CRS variant in patients receiving CD22 CAR T cells
.
Blood.
2021
;
138
(
24
):
2469
-
2484
.
32.
Rad S M
AH
,
Poudel
A
,
Tan
GMY
,
McLellan
AD
.
Promoter choice: who should drive the CAR in T cells?
PLoS One.
2020
;
15
(
7
):
e0232915
.
33.
Alabanza
L
,
Webster
B
,
Xiong
Y
, et al
.
CAR T persistence and anti-leukemic efficacy in vivo are dependent upon lentiviral vector internal promoter: MSCV vs EF-1 alpha
.
Mol Ther.
2019
;
27
(
4
):
322
-
322
.
34.
Kochenderfer
JN
,
Feldman
SA
,
Zhao
Y
, et al
.
Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor
.
J Immunother.
2009
;
32
(
7
):
689
-
702
.
10.1097/CJI.0b013e3181ac6138
35.
Ho
JY
,
Wang
L
,
Liu
Y
, et al
.
Promoter usage regulating the surface density of CAR molecules may modulate the kinetics of CAR-T cells in vivo.
Mol Ther Methods Clin Dev.
2021
;
21
:
237
-
246
.
36.
Spiegel
JY
,
Patel
S
,
Muffly
L
, et al
.
CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial
.
Nat Med.
2021
;
27
(
8
):
1419
-
1431
.
37.
Cordoba
S
,
Onuoha
S
,
Thomas
S
, et al
.
CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial
.
Nat Med.
2021
;
27
(
10
):
1797
-
1805
.
38.
Dai
H
,
Wu
Z
,
Jia
H
, et al
.
Bispecific CAR-T cells targeting both CD19 and CD22 for therapy of adults with relapsed or refractory B cell acute lymphoblastic leukemia [correction published in J Hematol Oncol. 2020;13:53]
.
J Hematol Oncol.
2020
;
13
(
1
):
30
.
39.
Shah
NN
,
Johnson
BD
,
Schneider
D
, et al
.
Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial
.
Nat Med.
2020
;
26
(
10
):
1569
-
1575
.
40.
Turtle
CJ
,
Hanafi
LA
,
Berger
C
, et al
.
CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients
.
J Clin Invest.
2016
;
126
(
6
):
2123
-
2138
.
41.
Li
AM
,
Hucks
GE
,
Dinofia
AM
, et al
.
Checkpoint inhibitors augment CD19-directed chimeric antigen receptor (CAR) T cell therapy in relapsed B-cell acute lymphoblastic leukemia
.
Blood.
2018
;132(suppl 1):556.
42.
Wagner
DL
,
Fritsche
E
,
Pulsipher
MA
, et al
.
Immunogenicity of CAR T cells in cancer therapy
.
Nat Rev Clin Oncol.
2021
;
18
(
6
):
379
-
393
.
43.
Myers
RM
,
Devine
K
,
Li
Y
, et al
.
Outcomes after reinfusion of CD19-specific chimeric antigen receptor (CAR)-modified T cells in children and young adults with relapsed/refractory B-cell acute lymphoblastic leukemia
.
Blood.
2021
;
138
(
suppl 1
):
474
.
44.
Jena
B
,
Maiti
S
,
Huls
H
, et al
.
Chimeric antigen receptor (CAR)-specific monoclonal antibody to detect CD19-specific T cells in clinical trials
.
PloS One.
2013
;
8
(
3
):e57838.
You do not currently have access to this content.

Sign in via your Institution